HARVARD BUSINESS SCHOOL

Investment Cycles and Startup Innovation

Ramana Nanda Matthew Rhodes-Kropf

Working Paper

12-032

October 28, 2011

Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may not be reproduced without permission of the copyright holder. Copies of working papers are available from the author.

Investment Cycles and Startup Innovation*

Ramana Nanda Harvard Business School Boston MA Matthew Rhodes-Kropf Harvard Business School Boston MA

October, 2011

Abstract

We find that VC-backed firms receiving their initial investment in hot markets are less likely to IPO, but conditional on going public are valued higher on the day of their IPO, have more patents and have more citations to their patents. Our results suggest that VCs invest in riskier and more innovative startups in hot markets (rather than just worse firms). This is true even for the most experienced VCs. Furthermore, our results suggest that the flood of capital in hot markets also plays a *causal* role in shifting investments to more novel startups - by lowering the cost of experimentation for early stage investors and allowing them to make riskier, more novel, investments.

JEL Classification: G24, G32

Key Words: Venture Capital, Innovation, Market Cycles, Financing Risk

^{*}Soldiers Field Road, Boston, MA 02163, USA. Email: rnanda@hbs.edu and mrhodeskropf@hbs.edu. We are grateful to Bill Kerr, Paul Gompers, Josh Lerner, David Scharfstein and Antoinette Schoar for fruitful discussion and comments, and we thank Oliver Heimes and Sarah Wolverton for research assistance, and we thank seminar participants at MIT, UT Austin, Tuck School of Business, Houston University as well as the Division of Faculty Research and Development at HBS and the Kauffman Foundation for financial support. All errors are our own.

Investment Cycles and Startup Innovation

Abstract

We find that VC-backed firms receiving their initial investment in hot markets are less likely to IPO, but conditional on going public are valued higher on the day of their IPO, have more patents and have more citations to their patents. Our results suggest that VCs invest in riskier and more innovative startups in hot markets (rather than just worse firms). This is true even for the most experienced VCs. Furthermore, our results suggest that the flood of capital in hot markets also plays a *causal* role in shifting investments to more novel startups - by lowering the cost of experimentation for early stage investors and allowing them to make riskier, more novel, investments.

JEL Classification: G24, G32

Key Words: Venture Capital, Innovation, Market Cycles, Financing Risk

I. Introduction

It is well known that the financing available for startups that commercialize new technologies is extremely volatile. These "investment cycles" have been extensively studied in the literature on venture capital (Gompers and Lerner (2004), Kaplan and Schoar (2005), Gompers et al. (2008)), but have also been documented in historical work linking financial market activity to radical innovations in manufacturing, communications and transportation going back to the mid 1700s (Kindleberger (1978); Perez (2002)). Conventional wisdom and much of the popular literature tends to associate these cycles with negative attributes. Herding among investors is believed to lead to an excess supply of capital in the market (Scharfstein and Stein (1990)), lowering the discipline of external finance and leading to more "junk" and "me-too" ventures getting financed in hot markets (Gupta (2000)).

However, an alternative view suggests that periods of heated activity in the financing of startups may also be associated with better investment opportunities (Gompers et al. (2008), Pastor and Veronesi (2005)). In addition, Nanda and Rhodes-Kropf (2011) argue that the abundance of capital in such times may also allow investors to experiment more effectively, thereby shifting the type of startups that investors finance towards those that are neither better nor worse but more risky and innovative.

According to this latter view, the abundance of capital associated with investment cycles may not just be a response to the arrival of new technologies, but may in fact play a critical role in driving the commercialization and diffusion of new technologies. It also suggests that looking only at the failure rates for firms funded in hot markets is not sufficient to infer that more "junk" is funded in such times. Greater failures can also result from more experimentation, so that simultaneously examining the degree of success for the firms that did not fail may be key to distinguishing between a purely negative view of investment cycles and one that suggests it

also facilitates experimentation.

We examine how the environment in which a new venture was first funded relates to their ultimate outcome. We analyze whether firms funded in hot times are more risky, more innovative, or just worse. We find that firms funded in hot times are more risky and more innovative and that individual VCs alter what they invest in across the cycle. Furthermore, our findings suggest that excess capital entering the venture community may cause this shift. Thus, our work is related to a growing body of work that considers the role of financial intermediaries in the innovation process (see Kortum and Lerner (2000), Hellmann (2002), Lerner et al. (2011), Sorensen (2007), Tian and Wang (2011), Manso (2011), Hellmann and Puri (2000)), however, we extend this work by exploring how experimentation and innovation are linked to the state of venture capital market.

We study the ultimate outcome for venture capital-backed startups that were first funded between 1980 and 2004. We find that startups receiving their initial funding in quarters when many other startups were also funded were less likely to IPO (and more likely to go bankrupt) than those founded in quarters when fewer firms were funded. Conditional on being successful enough to go public, however, startups funded in more active periods were valued higher on the day of their IPO, had a higher number of patents and received more citations to their patents. Our results suggest that more novel, rather than *just* "worse" firms, seem to be funded in boom times.¹

This result is the first to demonstrate how the risk and innovation of venture investments are changing across the investment cycle. However, since the result is about the entire pool of investments it does not tell us if the entry of new investors is causing the shift or if experienced investors are changing how they invest. When we include investor fixed effects our estimations suggest that the results are not being driven by uninformed investors entering during hot

¹The idea that worse projects are funded during hot times is likely true - we are suggesting that simultaneously riskier, more innovative projects are funded.

times, but rather by the current investors changing their investments. Furthermore, when we reduce the sample to the most active 250 investors in the market, we find that even the most experienced investors back riskier, more innovative startups in boom times.

An obvious question about the observed correlation between hot markets and the funding of more novel startups is whether the hot markets are purely a response to different investment opportunities where the type of startup is more novel, or whether the abundance of capital also *changes* the type of firm that investors are willing to finance in such times (independent of the investment opportunities at different points in the cycle).

In order to shed light on this question, we exploit the fact that the supply of capital into the VC industry is greatly influenced by the success of prior investments by VC investors (Gompers and Lerner (1998), Jeng and Wells (2000), Fulghieri and Sevilir (2009)). Venture backed IPOs are systematically related to future fundraising, as VCs raise follow-on funds after having demonstrated success with the investments in prior funds through their IPOs. The process of closing a previous fund, raising a subsequent fund and beginning to deploy that capital takes about 2-3 years and hence is a useful predictor of investment activity two to three years later. Since IPOs are of firms who received their first funding an average of 4-5 years previously, their IPOs are unlikely to be systematically related to the arrival of new opportunities 3 years later, or to the ultimate quality of their exit. Therefore, we use the number of VC-backed IPOs 9-12 quarters in the past to instrument for the number of investments VCs make in a given quarter. Our results are robust to this IV strategy, suggesting that after accounting for the level of investment due to differential opportunities in the cycle the "excess capital" in the industry seems to change the type of startup that VCs fund, towards firms that are more novel. This finding also holds when we include investor fixed effects and for the most experienced investors. Thus, excess capital in the venture industry seems to alter how even the more experienced venture capitalists invest. These findings are consistent with a view that

an abundance of capital allows investors to experiment more effectively, making them more willing to fund risky and innovative startups in boom times (Nanda and Rhodes-Kropf 2011).

Our results are related to the nascent literature examining the role of financial intermediaries in impacting the level and the type of innovation in the economy (Kortum and Lerner (2000), Mollica and Zingales (2007), Samila and Sorenson (2011), Nanda and Nicholas (2011)). Our results suggest that rather than just reducing frictions in the availability of capital for new ventures, investment cycles may play a much more central role in the diffusion and commercialization of technologies in the economy. Financial market investment cycles may create innovation cycles.

Our results are also related to a growing body of work examining the relationship between the financing environment for firms and startup outcomes. Recent work has cited the fact that many Fortune 500 firms were founded in recessions as a means of showing how cold markets lead to the funding of great companies. We note that our results are consistent with this finding. In fact, we document that firms founded in cold markets are significantly more likely to go public. However, we propose that hot markets not only lead to lower discipline among investors, but also seem to facilitate the experimentation that is needed for the commercialization and diffusion of radical new technologies. Hot markets allow investors to take on more risky investments, and may therefore be a critical aspect of the process through which new technologies are commercialized. Our results are therefore also relevant for policy makers who may be concerned about regulating the flood of capital during such investment cycles.

The rest of the paper is structured as follows. In Section 2, we develop our hypothesis around the relationship between financing environment and startup outcomes. In Section 3, we provide an overview of the Data that we use to test the hypothesis. We outline our empirical strategy and discuss our main results in Section 4. Section 5 concludes.

II. Financing Environment and Startup Outcomes

Popular accounts of investment cycles have highlighted the large number of failures that stem from investments made in bad times and noted that many successful firms are founded in recessions. A natural inference is that boom times lower the discipline of external finance and lead investors to make worse investments when money is chasing deals. The underlying assumption behind this inference is that as the threshold for new firms to be founded changes in boom times, so that the marginal firm that gets funded is weaker. Looking at the average pool of entrants is therefore sufficient to understand how the change in the financing environment for new firms is associated with the type of firm that is funded.

However, understanding the extent to which a firm is weaker ex ante is often very difficult for venture capital investors, who may be investing in new technologies, as-yet-non-existent markets and unproven teams. In fact, much of venture capitalist's successes seem to stem from taking informed bets with startups and effectively terminating investments when negative information is revealed about these firms. For example, Sahlman (2010) notes that as many as 60% of venture-capitalist's investments return less that their cost to the VC (either through bankruptcy or forced sales) and that about 10% of the investments – typically the IPOs – effectively make all the returns for the funds. Sahlman points to the example of Sequoia Capital, that in early 1999 "placed a bet on an early stage startup called Google, that purported to have a better search algorithm" (page 2). Sequoia's \$12.5 million investment was worth \$4 billion when they sold their stake in the firm in 2005, returning 320 times their initial cost.

Google was by no means a sure-shot investment for Seqoia Capital in 1999. The search algorithm space was already dominated by other players such as Yahoo! and Altavista, and Google may just have turned out to be a "me too" investment. In fact, Bessemer Ventures, another renowned venture capital firm had the opportunity to invest in Google because a friend

of partner David Cowan had rented her garage to Google's founders, Larry Page and Sergey Brin. On being asked to meet with the two founders, Cowan is said to have quipped, "Students? A new search engine? ... How can I get out of this house without going anywhere new your garage?" (http://www.bvp.com/portfolio/antiportfolio.aspx) In fact, Bessemer ventures had the opportunity to, but chose not to invest in several other such incredible successes, including Intel, Apple, Fedex, Ebay and Paypal.

The examples above point to the fact that while VCs may not be able to easily distinguish good and bad investment opportunities ex ante, they may have a better sense of how risky a potential investment might be. An investment that is more risky ex ante will be more likely to fail. In this sense, an ex post distribution of risky investments can look a lot like an ex post distribution of worse investments. However, on average the successes in risky investments will be bigger than less risky ones, while worse investments will do badly regardless. Figure 1 highlights how the ex post distribution of risky investments differs from the ex post distribution of worse investments. That is, rather than a shift in the distribution of outcomes to the left (or the right if investments are consistently better), riskier investments lead to a twist in the distribution of outcomes, with greater failures, but a few, bigger successes. Nanda and Rhodes-Kropf (2011) propose that investors may fund riskier investments in hot markets as these times allow investors to experiment more effectively. If this is the case, then we should expect to see fewer successes and more failures for firms funded in hot markets. However, conditional on a successful outcome such as an IPO, we would expect firms funded in hot markets to do even better.

The main objective of this paper is therefore to examine the extent to which the patten of VC investments in boom times looks more like the chart on the left, as opposed to the chart on the right. Our analysis has two main elements. First, we document a robust

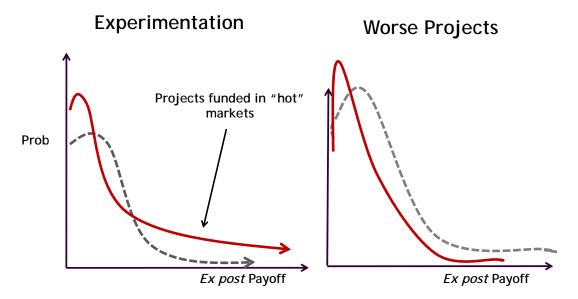


Figure 1: Distinguishing Risky Investments from Worse Investments by looking at the expost distribution of outcomes

correlation between firms being funded in boom times being simultaneously less likely to IPO but having bigger successes in the fewer instances when they do IPO. We also show that the bigger successes are not just limited to a financial measure of valuation, but also extend to real outcomes such as the quality and quantity of the firm's patents. This suggest that VCs invest in more innovative firms in boom times.

The second element of our analysis entails an initial look at the mechanism behind this correlation. VC investments clearly follow investment opportunities, so that investment opportunities associated with new technologies and markets are likely to be riskier and also attract more VC money. However, there is also a possibility that in addition to this, the flood of money during boom times allows VCs to experiment more effectively, and thereby change the type of investments they choose to make towards more novel, innovative startups. We examine the extent to which this second mechanism of "money changing deals" may also be at play, by using instrumental variables to untangle the endogeneity in the analysis.

Before proceeding with the results, we first outline the data used in our analysis in Section III. below.

III. Data

The core of our analyses are based on data from Thompson Venture Economics.² This dataset forms the basis of studies by the National Venture Capital Association in the US, as well as most academic papers on venture capital. We focus our analysis on US based startups, since data for these firms is most comprehensive. The US is also a good setting for our study because the institutionalization of the venture industry in the US implies that startups backed by venture capital firms are likely to comprise the vast majority of startups that commercialize new technologies in the US.

We focus our analysis on startups whose first financing event was an early stage (Seed or Series A) investment. This allows us to follow them to see their eventual outcome. Although Venture Economics provides ad-hoc data on venture financings going as far back as the 1960s, systematic data for the venture capital industry is only available from 1980 onwards. Given that we are interested in following the firms until they exit, we truncate the sample in 2004 to allow ourselves sufficient time for firms that were first financed in 2004 to IPO. We therefore focus our analysis on startups receiving their initial early stage investment between 1980 and 2004.

As can be seen from Table 1, there are 14,667 firms that meet our criteria of US-based startups that received their first early stage financing between 1980 and 2004. The probability that the firm has an IPO is 10% in the overall sample, but varies from 7% for Internet and Software startups to 19% for startups in the Biotechnology and Healthcare sectors.

As noted in Section II. above, a key way of distinguishing whether worse firms or riskier firms are being funded in hot markets is that their *ex post* distribution of outcomes is different. That is, although both risky and worse investments will lead to fewer successes (and hence a lower probability of an IPO in the context of our sample), risky investments would imply that

²This dataset was formerly known as VentureXpert.

conditional on an IPO, firms funded in hot markets will have a higher economic return than those funded in cold markets. On the other hand, worse investments would imply that even conditional on an IPO, firms funded in hot markets had lower value that those funded in cold markets. In order to examine this claim, a key measure we use is the pre-money valuation at IPO for firms that eventually had an IPO.³ This data was collected from SDC's IPO database and when missing, directly from firms' SEC filings. As can be seen from Table 1, the average pre-money valuation for a firm in our sample that had an IPO was \$200 M. However, this varied from over \$300 M for Internet and Communications startups to just over \$ 100 M for biotechnology and health care startups.

In order to determine whether the bigger successes were purely financial or also present in 'real outcomes', we also examine two measures of firm innovation. The first is a raw count of patents granted to the firm that were filed in the 3 years following its first funding. The second measure is the cumulative number of citations to these patents, up to three years from the patents being granted.⁴ Both these measures were collected by hand-matching the names of the firms that IPOed to assignees in the US Patent and Trademark Office (USPTO) patent database maintained by the NBER. This dataset has patent-level records with information on the filing and grant dates for all patents in the US as well as information on citations to prior art made by each patent. Matching firms in our sample to the patent database therefore allows us to calculate their patenting in the 3 years immediately prior to receiving first funding and the subsequent citations those patents received. This facilitates the study of the innovations by the startups while they were still private. As can be seen from Table 1, the average number of patents filed is 3.7 and the average number of citations is 16.5, but there is again significant

³Note that the pre-money valuation is the value of the firm before accounting for the new money coming into the firm at the IPO. Since firms will raise different amounts of money in the IPO, the pre-money allows a more clearcut comparison of value across firms.

⁴While the three year windows are somewhat arbitrary, they are chosen so as to minimize the number of years that would be dropped from the analysis (given about a 2-3 year delay in the granting of patents from the time they are filed).

variation in both patenting and citation rates across industry sectors.

In Table 2, we provide descriptive statistics that show the main patterns in the data.

IV. Regression Results

A. Riskier investments or Worse Investments?

In Tables 3 and 4, we turn to firm-level regressions to examine the relationship between the financing environment in a the quarter a firm received its first financing, and the ultimate outcome for that firm. Table 3 reports estimates from OLS regressions where the dependent variable is binary and takes the value 1 if the firm had an IPO.⁵ The estimations take the form:

$$Y_i = \beta_1 OTHFIN_t + \beta_2 X_i + \phi_i + \tau_T + \varepsilon_i \tag{1}$$

In these regressions, each observation corresponds to an individual entrepreneurial firm and the dependent variable, Y_i refers to the eventual outcome for firm i. It takes the value 1 if the firm had an IPO and zero otherwise. ϕ_j , refers to industry-level fixed effects, corresponding to the five industries outlined in Table 1. τ_T refers to period fixed effects. Since our hypothesis is about the cyclicality of investment over time, we cannot absorb all the inter-temporal variation in our data by including quarter-level or annual fixed effects. However, given that our sample spans 25 years, we also want to ensure that we do include some period controls to account for systematic changes in the size of funds as the industry matured. We therefore segment the data into three periods, corresponding to 1980-1989, 1990-1999 and 2000-2004. Period fixed effects refer to dummy variables for these three periods.

The variable $OTHFIN_t$ is our main variable of interest and refers to the number of other

⁵We have reported the results from OLS regressions, in order to facilitate comparisons with the IV regressions in following tables. The results are robust to running the regressions as probit models.

firms in the sample that received their initial early stage financing in the same quarter as firm i. It therefore captures the level of financing activity in the quarter that the focal firm was first funded, and proxies for the extent to which a given quarter was "hot" in that period. The matrix X_i refers to firm-level covariates that we include in the regressions. These include the amount of money the startup raised in the financing event, the number of investors in the syndicate that made the investment, and dummy variables to control for whether the startup was based in California or Massachusetts. Standard errors are clustered by quarter to account for the fact that our main outcome of interest is measured at the quarterly-level.

As can be seen from Table 3, firms that were first financed in quarters with a lot of financing activity were less likely to IPO. The results continue to be robust to the inclusion of firm-level covariates, industry fixed effects and period fixed effects. In addition, we drop the quarters associated with the extreme spike in activity during the internet bubble to ensure that the results were not being driven by these outliers. $OTHFIN_t$ is measured in terms of 100s of firms, so the magnitude of the coefficients imply that an increase in the number of early stage investments in a given quarter by 100 is associated with a 1.6% fall in the probability of an IPO. Given the baseline IPO probability is 10%, and the standard deviation of investments per quarter is 135, this implies that a one standard deviation increase in the number of investments per quarter is associated with a 20% fall in the probability that any one of those investments goes public. Table 3 therefore highlights the fact that firms financed in boom times are less likely to IPO. In unreported regressions we also find that firms funded in boom times are more likely to go bankrupt. These results, however, do not imply that VCs fund more 'junk' in hot markets. In order to make this inference, we also need to examine the degree of success for the firms that IPO.

In Table 4, we report estimates from firm-level regressions where the dependent variable is the log of the pre-money value for the firm, conditional on it eventually going public. That is, for the 10% of firms in our sample that did eventually go public, we run regressions that take the form:

$$\log(PREVAL)_i = \beta_1 OTHFIN_t + \beta_2 X_i + \phi_i + \tau_T + \varepsilon_i \tag{2}$$

As with Table 3, each observation in these regressions corresponds to an individual firm and the dependent variable, $\log(PREVAL)_i$ refers to the premoney value for the firm on the day it went public. Again, our main variable of interest is $OTHFIN_t$, that measures the number of firms in our original sample that were first financed in the same quarter as firm i. The matrix X_i refers to firm-level covariates that we include in the regression. These include the total amount of money raised prior to the IPO, the number of years from the first funding event to the IPO, the value of the NASDAQ on the day of the IPO, and dummy variables to control for whether the startup was based in California or Massachusetts. As before, standard errors are clustered at the quarter-level.

As can be seen from Table 4, conditional on going public, firms funded in quarters with a lot of funding activity have a higher valuation on the day of their IPO. This result is robust to controlling for the value of the NASDAQ on the day of the IPO, the time from first funding to the IPO as well as the amount of money raised by the firm till that point. In addition, our results are robust to the inclusion of industry- and period-fixed effects, as well as to dropping firms that were first funded during the internet bubble. The coefficient on Column (4) implies that a one standard deviation increase in the funding activity in a given quarter is associated with a 6%, or \$ 13 million increase in the value of a firm (from \$219 M to \$232 M) if it goes public.

Our results suggest that VCs fund riskier firms in quarters with more financing activity. Although these firms have a lower probability of going public, *conditional* on an IPO, they are more valuable.

B. Investor Fixed Effects

In Table 5, we examine whether the correlations we are observing are driven by different investors who might be entering during periods of high financing activity, or whether the same investors make riskier investments during hot markets. In order to do so, we run the same regressions as outlined in Tables 3 and 4, but at the investor-firm level. That is, we now have multiple observations for firms with more than one investor in the syndicate. In these instances, each observation corresponds to the specific investor-firm pair in that round of funding, so that Y_i becomes Y_{ik} and $\log(PREVAL)_i$ becomes $\log(PREVAL)_{ik}$.

Expanding the data to the investor level allows us to include investor fixed effects, and thereby examine whether the same investors themselves change the types of firms they fund in hot and cold markets. Specifically, Table 5 reports results from estimations that take the form:

$$Y_{ik} = \beta_1 OTHFIN_t + \beta_2 X_i + \phi_i + \psi_k + \tau_T + \varepsilon_{ik}$$
(3)

and

$$\log(PREVAL)_{ik} = \beta_1 OTHFIN_t + \beta_2 X_i + \phi_i + \psi_k + \tau_T + \varepsilon_{ik}$$
(4)

where ψ_k refers to investor fixed effects and all the other variables are exactly as defined in Tables 3 and 4.

Table 5 reports these estimates for all firms in the sample for whom we have a unique identifier and who had multiple investments. We also reduce the set of investors to the most experienced 250 firms which includes only the firms that made at least 25 investments over the period 1980-2004. As can be seen from Table 5, the patterns observed in Tables 3 and 4 continue to hold, with very similar magnitudes. These findings are important as they highlight the observed relationship between hot markets and risky firms seems to come from within-firm changes in the type of investments made across the cycle, as opposed to a different types of

investors investing in risky vs. less risky firms across the cycle. Moreover, even the most active/experianced investors shift the level of risk in their investments across the cycle.

C. Money *Changing* Deals?

One likely explanation for our results is that venture capital investments will be particularly high at times when risky technologies, ideas and startups are available to be financed. The arrival of new technologies attracts investment and these new technologies are more likely to be risky investments. In addition to this explanation, however, Nanda and Rhodes-Kropf (2011) provide a theoretical model linking financial market activity to more risky investments. In their model, the increase in financing activity also lowers financing risk, which allows investors to experiment more effectively, and hence take on riskier, more innovative investments. According to this view, the flood of money associated with the presence of heated investment activity may actually cause VCs to change the type of investments they are willing to make – towards more risky, innovative startups in the market.

In order to examine the extent to which this second mechanism is also at play, we exploit a particular feature of the VC industry to create a measure of "excess capital" in the industry. As pointed out by Chung et al. (2011), fees and carried interest from future fund inflows plays an important role in the overall compensation for VC partners, so VC firms are eager to raise follow on funds. Demonstrating strong returns is a precursor to raising funds. An active IPO market results in good VC fund returns and allows VC to raise more future funds. This, in turn leads to high levels of investment activity as VCs deploy their funds. The process of winding-up a previous fund, raising a subsequent fund and beginning to deploy the new fund takes about two to three years and hence is a useful predictor of investment activity two to three years later. We therefore use IPOs of VC-backed startups 9-12 months prior to each quarter as an instrument for the level of early stage investment activity experienced in that quarter. The identification

strategy hinges of the assumption that the feature of the VC market outlined above will result in a systematic relationship between Venture backed IPOs today and investment activity three years in the future, but that investment opportunities will not systematically arise 3 years after IPOs. Since IPOs are of firms who received their first funding an average of 4-5 years previously we think that their IPOs are unlikely to be systematically related to the arrival of new opportunities 3 years later, or to the ultimate quality of those opportunities exit.

We therefore run two-stage-least-squares regressions, where the variable $OTHFIN_t$ in equations (1) and (2) is treated as endogenous and a variable that calculates the number of VC-backed IPOs 9-12 quarters before t is used to instrument for $OTHFIN_t$. These results are reported in Table 6. As can be seen from Table 6, the regressions have a strong first stage, and pass the F-test for possible weak instruments.

The IV results are significantly stronger than previous results, highlighting the presence of endogeneity (in line with the fact that VC investments would respond to the arrival of new technologies) but also highlighting that the presence of excess capital in the market seems to encourage experimentation. In Table 7, we report the result of the same regressions, but run at the investor-firm level and including investor fixed effects. The results continue to hold, implying that the high level of investment activity leads VCs to change the type of investments that they make, towards more risky startups that may have a higher probability of failure, but may also have bigger successes.

This is a fascinating result because it implies a much larger role for financial markets in the innovative process that previously thought. Rather than money simply flowing toward good ideas and away from bad, the results in Tables 6 and 7 imply that a flood of money into the venture community can actual increase the riskiness of the projects funded. The question then is, is this just a shift to riskier projects or actually to more innovative ones?

D. "Risky" vs "Novel" Investments

Thus far, the results we have reported in Tables 3-7 are based on financial measures of success. That is, firms funded in hot markets are less likely to IPO (and more likely to fail), but are valued higher on the day of their IPO. In Tables 8 and 9, we extend the estimation framework we used to study valuation to real outcomes associated with firm-level innovation. That is, we ask whether these are purely more risky investments in financial terms or whether the investments VCs make in hot markets are associated with more novel technologies, or innovative firms.

Following a long literature in economics (for example Jaffe et al. (1993)), we use firm-level patenting as our measure of innovation. While patenting is only one measure of firm-innovation, it is a very relevant measure of innovation in our sample of high-tech firms. Over two-thirds of the firms that IPOed filed at least one patent in the three years following their first investment. Moreover, patent citations have been shown to correlate closely with both the quality of inventions as well as their economic effects (Hall et al. (2005)).

In Tables 8 and 9, we re-run the estimations reported in Tables 6 and 7, but with the number of patents and number patent citations as the dependent variable. Table 8 shows that firms funded in hot markets had a 20% higher rate of patenting, and that there was weak evidence that these patents were also more highly cited. In Table 9, we include investor fixed effects and report the estimates for the most active investors, who made at least 25 investments in our sample period. The results of these regressions are significantly stronger, suggesting that the most experienced investors are particularly likely to change their investments towards more novel, innovative startups in periods of high financing activity.

V. Conclusions

New firms that surround the creation and commercialization of new technologies have the potential to have profound effects on the economy (Aghion and Howitt (1992), Foster et al. (2008)). The creation of these new firms and their funding is highly cyclical (Gompers et al. (2008)). Conventional wisdom associates the top of these cycles with negative attributes. In this view, an excess supply of capital is associated with money chasing deals (Gompers and Lerner (2000)), a lower discipline of external finance (Nanda (2008)), and a belief that this leads to worse ventures receiving funding in hot markets (Gupta (2000)).

However, the evidence in our paper suggests another, possibly simultaneous, phenomenon. We find that firms that are funded in 'hot' times are more likely to fail but create more value if they succeed. This pattern could arise if in 'hot' times more novel firms are funded. Our results provide a new but intuitive way to think about the differences in project choice across the cycle.

Since the financial results we present cannot distinguish between more innovative versus simply riskier investments, we also present direct evidence on the quantity and quality of patents produced by firms funded at different times in the cycle. Our results suggest that firms funded at the top of the market produce more patents and receive more citations than firms funded in less heady times. This indicates that a more innovative firm is funded during 'hot' markets.

Is this effect caused by new investors entering the market during 'hot' times while older, more experienced investors "stick to their knitting?" Or, are experienced investors also changing their investments across the cycle? Our evidence supports the idea that even the most experienced investors invest in riskier and more innovative projects at the top of the cycle.

These effects could occur because the type of investment available changes through the cycle.

Potentially new inventions cause the arrival of more funding and create a 'hot' environment. However, Nanda and Rhodes-Kropf (2011) demonstrate how excess funding in the venture capital market can actually rationally alter the type of investments investors are willing to fund toward a more experimental, innovative project. According to this view, the abundance of capital associated with investment cycles may not just be a response to the arrival of new technologies, but may in fact play a critical role in driving the creation of new technologies.

Using an instrumental variable approach we find evidence consistent with the idea that excess capital actually causes the type of investment to change. We argue that a hot IPO market two-three years in the past causes excess capital to flow into the venture industry that is unrelated to the current opportunity set. The increase in funding activity due to this excess capital should alter the type of investments made in a way that is unrelated to the current opportunities. We find strong results using this IV. Specifically, the results suggest that excess capital in the venture capital market causes investors, especially experienced investors, to shift their investments to riskier more innovative ideas.

To the extent that the top of the investment cycle leads to the funding of worse projects, then investment may be wasted. This leads many economists and regulators to believe that dampening the cycle would improve outcomes and therefore should be attempted. However, our work suggests caution. We show that the excess capital that arrives during 'hot' markets may allow for investment to flow into the most novel projects. Hot markets allow investors to take on more risky investments, and may therefore be a critical aspect of the process through which new technologies are commercialized.

Our results demonstrate how the risk and innovation of venture investments are changing across the investment cycle. We find pronounced effects that suggest that in hot markets a more risky and more innovative type of investment is funded. Furthermore it seems that the abundance of capital also *changes* the type of firm that investors are willing to finance in such

times. These findings are consistent with a view that an abundance of capital allows investors to experiment more effectively, making them more willing to fund risky and innovative startups in boom times (Nanda and Rhodes-Kropf (2011)). Financial market investment cycles may create innovation cycles.

References

- Aghion, Philippe, and Peter Howitt. "A Model of Growth through Creative Destruction." *Econometrica* 60 (1992), pp. 323–351.
- Chung, Ji-Woong, Berk A. Sensoy, Lea H. Stern, and Michael S. Weisbach. "Pay for performance from future fund flows: The case of private equity." Fisher College of Business working paper (2011).
- Foster, Lucia, John Haltiwanger, and Chad Syverson. "Reallocation, Firm Turnover and Efficiency: Selection on Productivity or Profitability." *The American Economic Review* 98 (2008), pp. 394–425.
- Fulghieri, Paolo, and Merih Sevilir. "Size and Focus of a Venture Capitalist's Portfolio." Review of Financial Studies 22 (2009), pp. 4643–4680.
- Gompers, Paul, Anna Kovner, Josh Lerner, and David Scharfstein. "Venture capital investment cycles: The impact of public markets." *Journal of Financial Economics* 87 (2008), pp. 1–23.
- Gompers, Paul, and Josh Lerner. "What drives venture capital fundraising?" Brookings

 Proceedings on Microeconomic Activity (1998), pp. 149–204.
- Gompers, Paul, and Josh Lerner. "Money chasing deals? The impact of fund inflows on private equity valuations." *Journal of Financial Economics* 55 (2000), pp. 281–325.
- Gompers, Paul, and Josh Lerner. *The Venture Capital Cycle*. Cambridge, MA and London: MIT Press (2004).
- Gupta, Udayan. Done Deals: Venture Capitalists tell their stories. Boston, MA: Harvard Business School Press (2000).

- Hall, Bronwyn, Adam Jaffe, and Manuel Trajtenberg. "Market Value and Patent Citations." Rand Journal of Economics 36 (2005), pp. 16–38.
- Hellmann, Thomas. "A Theory of Strategic Venture Investing." Journal of Financial Economics 64 (2002), pp. 285–314.
- Hellmann, Thomas, and Manju Puri. "The Interaction between Product Market and Financing Strategy: The Role of Venture Capital." *Review of Financial Studies* 13 (2000), pp. 959–984.
- Jaffe, Adam B., Manuel Trajtenberg, and Rebecca Henderson. "Geographic localization of knolwedge spillovers as evidenced by patent citations." *Quarterly Journal of Economics* 108 (1993), pp. 577–598.
- Jeng, Leslie A., and Philippe C. Wells. "The Determinants of Venture Capital Funding: Evidence Across Countries." *Journal of Corporate Finance* 6 (2000), pp. 241–289.
- Kaplan, Steven, and Antoinette Schoar. "Private Equity Performance: Returns, Persistence and Capital Flows." *Journal of Finance* 60 (2005), pp. 1791–1823.
- Kindleberger, Charles. Manias, Panics, and Crashes: A History of Financial Crises. New York: Basic Books, revised and enlarged, 1989, 3rd ed 1996 edition (1978).
- Kortum, Samuel, and Josh Lerner. "Assessing the impact of venture capital on innovation."

 Rand Journal of Economics 31 (2000), pp. 674–92.
- Lerner, Josh, Morten Sorensen, and Per Stromberg. "Private Equity and Long-Run Investment: The Case of Innovation." *Journal of Finance* 66 (2011), pp. 445–477.
- Manso, Gustavo. "Motivating Innovation." forthcoming Journal of Finance (2011).
- Mollica, Marcos, and Luigi Zingales. "The impact of venture capital on innovation and the creation of new businesses." *University of Chicago working paper* (2007).

- Nanda, Ramana. "Entrepreneurship and the Discipline of External Finance." Harvard University Working Paper (2008).
- Nanda, Ramana, and Tom Nicholas. "Did Bank Distress Stifle Innovation During the Great Depression?" Harvard University working paper (2011).
- Nanda, Ramana, and Matthew Rhodes-Kropf. "Financing Risk and Bubbles of Innovation."

 Harvard University working paper (2011).
- Pastor, Lubos, and Pietro Veronesi. "Rational IPO waves." *Journal of Finance* 60 (2005), pp. 1713–1757.
- Perez, Carlota. Technological Revolutions and Financial Capital. Edward Elgar (2002).
- Sahlman, William. "Risk and Reward in Venture Capital." Harvard Business School Note 811-036 (2010), pp. 1–37.
- Samila, Sampsa, and Olav Sorenson. "Venture capital, entrepreneurship and economic growth."

 Review of Economics and Statistics 93 (2011), pp. 338–349.
- Scharfstein, David, and Jeremy Stein. "Herd behavior and investment." American Economic Review 80 (1990), pp. 465–479.
- Sorensen, Morton. "How smart is smart money? An empirical two-sided matching model of venture capital." *Journal of Finance* 62 (2007), pp. 2725–62.
- Tian, Xuan, and Tracy Yue Wang. "Tolerance for Failure and Corporate Innovation." working paper Indiana University (2011).

Descriptive Statistics

This table reports descriptive statistics on US based startups who received Seed or Early Stage financing from an investor in the Venture Economics database between 1980 and 2004.

For these firms, w.	e report data on the first finan	cing event and the ulti	For these firms, we report data on the first financing event and the ultimate outcome of the startup as of December 2010	of December 2010	
	Number of Eirms	Odl dtiwiered	Average Pre-Money		
			(\$, MM)	Patenting	Citations to Patents
Full Dataset	14,667	10%	219	3.7	16.5
Biotechnology and Healthcare	2,601	19%	117	5.4	20.8
Communications and Media	1,631	11%	362	3.4	18.2
Computer Hardware and Electronics	2,067	11%	202	4.7	21.9
Internet and Computer Software	6,050	2%	329	2.2	12.3
Non-High Technology	2,318	%8	126	1.7	9.9
1980-1989	3,418	18%	79	1.5	R
1990-1999	5,972	13%	311	5.2	26.4
2000-2004	5,277	3%	303	4.8	11.6

Table 1: Descriptive Statistics

Characteristics of Startups Funded in Hot vs. Cold Periods

This table reports differences in the ch	naracteristics of firms th	in the characteristics of firms that receive their first funding in hot vs. cold markets	n hot vs. cold markets	
				P Value for Two-
	All	Funded in Hot Market Funded in Cold Market	Funded in Cold Market	Tailed Test
All Firms in the Sample				
Number of firms funded per quarter				
Dollars invested in first funding	\$ 4.2 M	\$ 4.8 M	\$ 2 M	<0.001***
Number of Investors in first funding syndicate				
Startup based in California	10%	%2	21%	<0.001***
Startup based in Massachusetts	0.37	0.38	0.36	0.046**
Share of startups that had an IPO	0.11	0.11	0.11	0.347
Firms that had an IPO				
Firm age at IPO	4.7	4.6	5.0	***800.0
Total Dollars raised prior to IPO	\$ 52 M	\$ 55 M	\$ 50 M	0.53
Average Pre-Money Value at IPO	\$ 270 M	\$ 307 M	\$ 213 M	0.012**
Number of patents in 3 years following first funding	3.7	3.9	3.4	98.0
Citations to patents in 3 years following first funding	16.5	18.6	13.3	0.043**

Table 2: Characteristics of Startups Funded in Hot vs. Cold Periods

Probability of IPO based on market when the startup received first funding

This table reports the probability of a startup being coded as having an IPO" based on the characteristics of the VC funding environment when it first received funding

		1980-2004	2004		Drop 98-'00
	(1)	(2)	(3)	(4)	(5)
No. of other firms financed in that quarter	-0.027*** (0.003)	-0.028*** (0.003)	-0.026*** (0.003)	-0.016*** (0.005)	-0.046*** (0.012)
\$ raised in first financing		0.007**	0.008***	0.016*** (0.003)	0.020*** (0.003)
Number of investors in syndicate		0.013*** (0.002)	0.012*** (0.002)	0.009***	0.012*** (0.003)
Startup based in California		0.026***	0.025***	0.023*** (0.006)	0.033***
Startup based in Massachusetts		0.013 (0.010)	0.010 (0.010)	0.007	0.010 (0.013)
Industry Fixed Effects Period Fixed Effects	N NO	N N	Yes	Yes Yes	Yes Yes
Number of observations	14,667	13,903	13,903	13,903	8,896
R-Squared	0.03	0.04	90.0	0.08	0.08

Table 3: Probability of IPO based on market when the startup received first funding

Pre-Money Valuation at IPO

This table reports the pre-money valuation on the day of the IPO based on the characteristics of the VC funding environment when it first received funding

		1980	1980-2004		Drop 1998-2000
	(1)	(2)	(3)	(4)	(5)
No. of other firms financed in that quarter	0.299*** (0.053)	0.073*** (0.020)	0.071*** (0.020)	0.044*	0.172*** (0.055)
Total \$ raised prior to IPO		0.011*** (0.004)	0.011*** (0.004)	0.009***	0.022** (0.011)
Firm's age at IPO		0.001	0.003	0.028***	0.036***
Value of NASDAQ on day of IPO		0.352*** (0.021)	0.330*** (0.022)	0.219*** (0.024)	0.179*** (0.031)
Startup based in California		0.330*** (0.061)	0.302*** (0.064)	0.272*** (0.062)	0.287*** (0.064)
Startup based in Massachusetts		0.181**	0.168*	0.177** (0.085)	0.133 (0.084)
Industry Fixed Effects Period Fixed Effects	0 0 N	0 N NO	Yes	Yes Yes	Yes
Number of observations	1,500	1,477	1,477	1,477	1,257
R-Squared	0.11	0.35	0.38	0.41	0.4

Table 4: Pre-Money Valuation at IPO

Funding Environment and Startup Outcome - Investor Fixed Effects

the initial round of funding. This allows the presence of investor fixed effects. We report two sets of specifications. The first includes all This table OLS regressions as in Tables III and 4, but includes multiple observations per startup firm to account for multiple investors in firms for which we have data on the identity of the investors. The second reports only the most experienced investors, who make at least 25 investments over the period 1980-2004.

	Probability of IPO	y of IPO	Pre-Money Valu	Pre-Money Value conditional on IPO
	All firms	Firms >= 25 investments	All firms	Firms >= 25 investments
	(1)	(2)	(3)	(4)
No. of other firms financed in that quarter	-0.019***	-0.024***	0.059*	0.066**
	(0.005)	(0.006)	(0.033)	(0.033)
Control Variables	Yes	Yes	Yes	Yes
Industry Fixed Effects	Yes	Yes	Yes	Yes
Period Fixed Effects	Yes	Yes	Yes	Yes
Investor Fixed Effects	Yes	Yes	Yes	Yes
R-Squared	0.20	0.12	0.61	0.52
Number of observations	25,314	13,940	3,264	2,184

Table 5: Funding Environment and Startup Outcome - Investor Fixed Effects

The Effect of "Excess Capital" at time of funding on Firm Outcomes

this variable should capture that part of the investments that are due to "excess capital" over an above the investment opportunities available This table reports the results of 2 stage least square regressions, where the number of other firms financed in a given quarter is instrumented with a variable that measures the number of venture-backed firms that had an IPO 9-12 quarters before. The assumption is that IPOs 3 years ago are unrelated to the opportunities that exist today, but will lead to more fundraising and then subsequently investment by VCs. Hence, at the time.

	Probability of IPO	/ of IPO	Pre-Money Value conditional on IPO	conditional on
	OLS (Reg (4) in Table III)	N	OLS (Reg (4) in Table IV)	Λ
	(1)	(2)	(3)	(4)
No. of other firms financed in that quarter	-0.016***	-0.130***	0.044*	0.384**
	(0.005)	(0.024)	(0.023)	(0.172)
Control Variables	Yes	Yes	Yes	Yes
Industry Fixed Effects	Yes	Yes	Yes	Yes
Period Fixed Effects	Yes	Yes	Yes	Yes
R-squared	0.08	0.04	0.41	0.32
Number of observations	13,903	13,903	1,477	1,477
Coefficient on Instrument and First Stage Statistics				
Number of VC-backed IPOs 9-12 Quarters before		0.198***		0.389**
		(0.025)		(0.151)
Partial R-squared		0.010		0.050
F-Test for Weak Instruments		63.45		48.32

Table 6: The Effect of "Excess Capital" at time of funding on Firm Outcomes

The Effect of "Excess Capital" at time of funding on Firm Outcomes - Investor Fixed Effects

This table reports the same regressions as in Tables V, but focusing on investors with at least 25 investments over the period 1980-2004.

	Probability of IPO	of IPO	Pre-Money Value conditional on IPO	e conditional on O
	OLS (Reg (2) in TableV)	ΛI	OLS (Reg (4) in TableV)	>1
	(1)	(2)	(3)	(4)
No. of other firms financed in that quarter	-0.019***	-0.024***	0.066**	0.281***
	(0.005)	(0.006)	(0.033)	(0.101)
Control Variables	Yes	Yes	Yes	Yes
Industry Fixed Effects	Yes	Yes	Yes	Yes
Period Fixed Effects	Yes	Yes	Yes	Yes
Investor Fixed Effects	Yes	Yes	Yes	Yes
R-Squared	90.0	90.0	0.52	0.50
Number of observations	13,940	13,940	2,184	2,184
Coefficient on Instrument and First Stage Statistics				
Number of VC-backed IPOs 9-12 Quarters before		0.238***		0.350***
		(0.020)		(0.041)
Partial R-squared		0.011		0.050
F-Test for Weak Instruments		135.54		72.32

Table 7: The Effect of "Excess Capital" at time of funding on Firm Outcomes - Investor Fixed Effects

The Effect of "Excess Capital" at time of funding on Firm Innovation

this variable should capture that part of the investments that are due to "excess capital" over an above the investment opportunities available This table reports the results of 2 stage least square regressions, where the number of other firms financed in a given quarter is instrumented with a variable that measures the number of venture-backed firms that had an IPO 9-12 quarters before. The assumption is that IPOs 3 years ago are unrelated to the opportunities that exist today, but will lead to more fundraising and then subsequently investment by VCs. Hence, at the time.

	Patents	nts	Citations	Citations to Patents
	OLS	2	OLS	2
	(1)	(2)	(3)	(4)
No. of other firms financed in that quarter	0.071*** (0.021)	0.187** (0.091)	0.070* (0.039)	0.105
Control Variables	Yes	Yes	Yes	Yes
Industry Fixed Effects	Yes	Yes	Yes	Yes
Period Fixed Effects	Yes	Yes	Yes	Yes
R-squared	0.18	0.17	0.15	0.15
Number of observations	1,477	1,477	1,477	1,477
Coefficient on Instrument and First Stage Statistics				
Number of VC-backed IPOs 9-12 Quarters before		0.507***		0.507***
		(0.141)		(0.141)
Partial R-squared		0.080		0.080
F-Test for Weak Instruments		101.52		101.52

Table 8: The Effect of "Excess Capital" at time of funding on Firm Innovation

Funding Environment and Startup Innovation - Investor Fixed Effects

This table reports the same regressions as in Tables VI and VII, but focusing on investors with at least 25 investments over the period 1980-2004.

	Pate	Patents	Citations	Citations to Patents
	OLS	N	OLS	ΛΙ
	(1)	(2)	(3)	(4)
No. of other firms financed in that quarter	0.134***	0.424***	0.167***	0.518*** (0.138)
Control Variables	Yes	Yes	Yes	Yes
Industry Fixed Effects	Yes	Yes	Yes	Yes
Period Fixed Effects	Yes	Yes	Yes	Yes
Investor Fixed Effects	Yes	Yes	Yes	Yes
R-Squared	0.33	0.28	0.31	0.28
Number of observations	2,190	2,190	2,190	2,190
Coefficient on Instrument and First Stage Statistics				
Number of VC-backed IPOs 9-12 Quarters before		0.414***		0.414***
		(0.036)		(0.036)
Partial R-squared		0.080		0.080
F-Test for Weak Instruments		182.7		182.7

Table 9: Funding Environment and Startup Innovation - Investor Fixed Effects