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Despite its presumed role as an engine of economic growth, we know surprisingly little about
the drivers of scientific creativity. We exploit key differences across funding streams within
the academic life sciences to estimate the impact of incentives on the rate and direction of
scientific exploration. Specifically, we study the careers of investigators of the Howard Hughes
Medical Institute (HHMI), which tolerates early failure, rewards long-term success, and gives
its appointees great freedom to experiment, and grantees from the National Institutes of Health
(NIH), who are subject to short review cycles, predefined deliverables, and renewal policies
unforgiving of failure. Using a combination of propensity-score weighting and difference-in-
differences estimation strategies, we find that HHMI investigators produce high-impact articles
at a much higher rate than a control group of similarly accomplished NIH-funded scientists.
Moreover, the direction of their research changes in ways that suggest the program induces them
to explore novel lines of inquiry.

1. Introduction

� In 1980, a scientist from the University of Utah, Mario Capecchi, applied for a grant at
the National Institutes of Health (NIH). The application contained three projects. The NIH peer
reviewers liked the first two projects, which were building on Capecchi’s past research efforts, but
they were unanimously negative in their appraisal of the third project, in which he proposed to
develop gene targeting in mammalian cells. They deemed the probability that the newly introduced
DNA would ever find its matching sequence within the host genome vanishingly small and the
experiments not worthy of pursuit. The NIH funded the grant despite this misgiving, but strongly
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recommended that Capecchi drop the third project. In his retelling of the story, the scientist
writes that despite this unambiguous advice, he chose to put almost all his efforts into the third
project: “It was a big gamble. Had I failed to obtain strong supporting data within the designated
time frame, our NIH funding would have come to an abrupt end and we would not be talking
about gene targeting today” (Capecchi, 2008). Fortunately, within four years, Capecchi and his
team obtained strong evidence for the feasibility of gene targeting in mammalian cells, and in
1984 the grant was renewed enthusiastically. Dispelling any doubt that he had misinterpreted
the feedback from reviewers in 1980, the critique for the 1984 competitive renewal started, “We
are glad that you didn’t follow our advice.” The story does not stop there. In September 2007,
Capecchi shared the Nobel Prize for developing the techniques to make knockout mice with Oliver
Smithies and Martin Evans. Such mice have allowed scientists to learn the roles of thousands of
mammalian genes and provided laboratory models of human afflictions in which to test potential
therapies.

Across all of the social sciences, researchers often model the creative process as the
cumulative, interactive recombination of existing bits of knowledge in novel ways (Weitzman,
1998; Burt, 2004; Simonton, 2004). But the combinatoric metaphor does not speak directly
to the important tradeoff illustrated by the anecdote above. Some discoveries are incremental
in nature, and reflect the fine-tuning of previously available technologies or the exploitation
of established scientific trajectories. Others are more radical and require the exploration of new,
untested approaches. Both forms of innovation are valuable, but we still have a poor understanding
of what drives radical innovation. One view is that radical innovation happens by accident. From
Archimedes’ eureka moment to Newton’s otherworldly contemplation interrupted by the fall
of an apple, luck (and sometimes talent) play an essential role in lay theories of breakthrough
innovation. Of course, if luck and talent exhaust the list of ingredients necessary to produce
breakthroughs, then there is little for economists to contribute.

In the anecdote reported above, the scientist was undeterred by his peers’ advice to “play
it safe,” and eventually saw his bold ideas prevail. If incentives play an important role in the
production of novel ideas, this heroic story might be atypical. In this article, we provide empirical
evidence that nuanced features of incentive schemes embodied in the design of research contracts
exert a profound influence on the subsequent development of breakthrough ideas. The challenge
is to find a setting in which (i) radical innovation is a key concern; (ii) agents are at risk of
receiving different incentive schemes; and (iii) it is possible to measure innovative output and to
distinguish between incremental and radical ideas. We argue that the academic life sciences in
the United States provides an excellent testing ground.

Specifically, we study the careers of researchers who can be funded through two very distinct
mechanisms: investigator-initiated R01 grants from the NIH, or support from the Howard Hughes
Medical Institute (HHMI) through its investigator program. HHMI, a non-profit medical research
organization, plays a powerful role in advancing biomedical research and science education in
the United States. The institute commits almost $700 million a year—a larger amount than the
National Science Foundation biological sciences program, for example. HHMI’s stated goal is to
“push the boundaries of knowledge” in some of the most important areas of biological research.
To do so, the HHMI program has adopted practices that according to Manso (2011) should
provide strong incentives for breakthrough scientific discoveries: the award cycles are long (five
years, and typically renewed at least once); the review process provides detailed, high-quality
feedback to the researcher; and the program selects “people, not projects,” which allows (and in
fact encourages) the quick reallocation of resources to new approaches when the initial ones are
not fruitful.1 This stands in sharp contrast with the incentives faced by life scientists funded by
the NIH. The typical R01 grant cycle lasts only three years, and renewal is not very forgiving
of failure. Feedback on performance is limited in its depth. Importantly, the NIH funds projects

1 Though not part of Manso’s (2011) initial analysis, we extend his model in Appendix A to show that providing
the researcher greater latitude in her search activities encourages exploration.
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with clearly defined deliverables, not individual scientists, which could increase the costs of
experimentation.

The contrast between the HHMI and NIH grant mechanisms naturally leads to the question
of whether HHMI-style incentives result in a higher rate of production of particularly valuable
ideas. Three significant hurdles must be overcome to answer this question.

First, we need to identify a group of NIH-funded scientists who are appropriate controls
for the researchers selected into the HHMI program. Given the high degree of accomplishment
exhibited by HHMI investigators at the time of their appointment, a random sample of scientists
of the same age, working in the same fields, would not be appropriate. In the absence of a
plausible source of exogenous variation for HHMI appointment, we estimate the treatment effect
of the program by contrasting HHMI-funded scientists’ output with that of a group of NIH-funded
scientists who focus their research on the same subfields of the life sciences as HHMI investigators
and received prestigious early career prizes. Furthermore, using an in-depth understanding of
the HHMI appointment process, we cull from this control group scientists who look similar
to the HHMI investigators on the observable factors that we know to be relevant for selection into
the HHMI program.

Second, we must be able to distinguish particularly creative contributions from incremental
advances. Although we investigate the effect of the program on the raw number of original
research articles published, the bulk of our analysis focuses on the number of publications that
fall into different quantiles of the vintage-specific, article-level distribution of citations (see
Figure 1): top quartile, top five percentiles, and top percentile. We also use these scientists’
own citation impact in the pre-appointment period to ask whether they often outperform their
most heavily cited article, and conversely, whether they often publish articles that garner less
citations than their least-cited article. Another prong in our attempt to measure creativity is to
measure explorative behavior directly. Specifically, we examine whether the research agenda of

FIGURE 1
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HHMI investigators changes after their appointment; we measure the novelty (both relative to
the universe of published research and to the scientists themselves) of the keywords tagging their
publications; and we also assess whether the impact of their research broadens, as inferred by the
range of journals that cite it.

Third, we need to ascertain whether it is the incentive features of the program that explain
its effects, or some alternative mechanism, such as increased resources, ascription dynamics
(whereby HHMI investigators get cited more due to their enhanced status), peer effects, or the
sorting of talented trainees into HHMI-supported labs. We tackle these issues (to the extent
possible) in the discussion.

Our results provide support for the hypothesis that appropriately designed incentives
stimulate exploration. In particular, we find that the effect of selection into the HHMI program
increases as we examine higher quantiles of the distribution of citations. Relative to early career
prize winners (ECPWs), our preferred econometric estimates imply that the program increases
overall publication output by 39%; the magnitude jumps to 96% when focusing on the number
of publications in the top percentile of the citation distribution. Success is also more frequent
among HHMI investigators when assessed with respect to scientists’ own citation impact prior
to appointment, rather than relative to a universal citation benchmark. Symmetrically, we also
uncover robust evidence that HHMI-supported scientists “flop” more often than ECPWs: they
publish 35% more articles that fail to clear the (vintage-adjusted) citation bar of their least well
cited pre-appointment work. This provides suggestive evidence that HHMI investigators are not
simply rising stars annointed by the program. Rather, they appear to place more risky scientific
bets after their appointment, as theory would suggest.

We bolster the case for the exploration hypothesis by focusing on various attributes of these
scientists’ research agendas. We show that the work of HHMI investigators is characterized by
more novel keywords than controls. These keywords are also more likely to change after their
HHMI appointment. Moreover, their research is cited by a more diverse set of journals, both
relative to controls and to the pre-appointment period.

The rest of the article proceeds as follows. In the next section, we present the theoretical
motivation for our hypothesis. Section 3 describes the construction of the sample and presents
descriptive statistics. Section 4 lays out our econometric methodology. Section 5 reports and
discusses the results of the analysis. Section 6 concludes.

2. Theoretical background

� The bulk of the literature on incentives for innovation has focused on the problems inherent
to the measurement and contractability of output that plague most innovative activities. For
example, Holmström (1989) observes that most innovation projects are risky, unpredictable, long
term, labor intensive, and idiosyncratic. In such settings, performance measures are likely to
be extremely noisy and contracting particularly challenging. This leads him to see virtue in the
adoption of low-powered incentives when creativity is what is required of the agent, for salary is
less likely to distort the agent’s attention away from the less-easily measurable tasks that compete
for her attention. This view stands in sharp contrast with the standard prescription to adopt piece
rates whenever an agent’s individual contributions are easy to measure, such as in the case of
the windshield installers studied by Lazear (2000). A substantial body of experimental and field
research in psychology reaches a similar conclusion, but for different reasons: the worry is that
pay for performance might encourage the repetition of what has worked in the past, at the expense
of the exploration of untested approaches (Amabile, 1996).

In a recent article, Manso (2011) explicitly models the innovation process as the result of
learning through experimentation. In this setting, the tradeoff between the exploitation of well-
known approaches and the exploration of new untested approaches first emphasized by March
(1991) arises naturally. The main insight of his contribution is that the optimal incentive scheme
to motivate exploration exhibits substantial tolerance for early failure and rewards for long-term
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success. Tolerance for early failure allows the agent to explore in the early stages of the contractual
relationship without incurring the usual negative consequences of lower pay or termination. At
the same time, reward for long-term success prevents the agent from shirking early on and induces
the agent to explore new ideas that will allow him to perform well in the longrun. The principal
can more effectively motivate exploration if he can commit not to terminate an agent after poor
short-term performance, even if it is ex post efficient for the principal to do so. Another important
ingredient of Manso’s model is timely feedback on performance. Providing information to the
agent about how well he is doing allows the agent to explore more efficiently, reducing the costs
of experimentation. An agent who does not get feedback on performance may waste more time
on unfruitful ideas.

Empirical evidence on the effects of long-term incentives is scant. Most relevant to the
findings presented below is Lerner and Wulf’s (2007) study of corporate R&D lab heads.
They show that higher levels of deferred compensation are associated with the production of
more heavily cited patents, whereas short-term incentives bear no relationship to firm innovative
performance. In a similar vein, Tian and Wang (2010) show that start-up firms backed by more
failure-tolerant venture capitalists are more innovative ex post. The present article presents the
first systematic attempt to isolate, in a field setting, the effect of the bundle of incentive practices
identified by Manso (2011) on exploration and creativity at the individual level (see Ederer and
Manso, 2010 for experimental evidence with a similar flavor). We believe that the academic
life sciences in the United States provide an appropriate setting, first and foremost because it
provides naturally occurring variation in incentives that closely matches the contrast between
pay-for-performance and exploration-type schemes emphasized by Manso (2011).

Most academic life scientists must rely on grants from the NIH, the largest public funder of
biomedical research in the United States. With an annual budget of $28.4 billion in 2007, support
from the NIH dwarfs that available from other public or private funders, including the National
Science Foundation ($6 billion in 2007) or the American Cancer Society ($147 million in 2007).
The most common type of NIH grant for investigator-initiated projects is the R01 grant. In 2007,
their average amount was $225,000 in annual direct costs, and the awards last for a typical three to
five years before coming up for renewal (see Figure 2). The NIH “study sections,” or peer-review
panels in charge of allocating awards, are notoriously risk averse and often insist on a great deal of
preliminary evidence before deciding to fund a project. This often leads researchers to resubmit
their applications several times and to multiply the number of applications, taking time away
from productive research activities. It is an often-heard complaint among academic biomedical
researchers that study sections’ prickliness encourages them to pursue relatively safe avenues
that build directly on previous results, at the expense of truly exploratory research (Kaplan, 2005;
Kolata, 2009; McKnight, 2009).

An alternative funding mechanism is provided by the investigator program of the HHMI.
This program “urges its researchers to take risks, to explore unproven avenues, to embrace the
unknown—even if it means uncertainty or the chance of failure.”2 New appointments are based
on nominations from research institutions; once selected, researchers continue to be based at their
institutions, typically leading a research group of 10–25 students, postdoctoral associates, and
technicians. In its stated policies, HHMI departs in striking fashion from NIH’s funding practices,
in ways that should bring incentives in line with the type of schemes suggested by Manso (2011).
HHMI investigators are initially appointed for five years,3 and in the case of termination, there is
a two-year phase-down period during which the researcher continues to be funded, allowing her
to search for other sources of funding without having to close down her lab.

Moreover, HHMI investigators appear to share the perception that their first appointment
review is rather lax, with reviewers more interested in making sure that they have taken on new

2 See www.hhmi.org/research/investigators/
3 Appointment lengths have varied over the history of the program; more detailed information will be provided in

the data section.
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FIGURE 2

LENGTH OF NIH R01 GRANTS VERSUS HHMI APPOINTMENTS
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projects with uncertain payoffs, rather than insisting on achievements. Below, we validate this
perception by showing that the second review is much more sensitive to performance than the
first. The review process is also streamlined, lasting a mere six weeks. Investigators are asked to
submit a packet containing their five most notable articles in the past five years, along with a short
research proposal for the next five years. In contrast, NIH grants take at a minimum three months
to be reviewed, and success typically depends upon a rather exhaustive list of accomplishments
by the primary research team members.

Because HHMI researchers publish 29 articles on average in the five years that follow their
initial appointment (the median is 25), constraining their renewal packet to contain only five
articles ensures that only what they see as their most meaningful achievements matters for the
renewal decision. The review process culminates in an oral defense in front of an elite panel
especially convened for the occasion. The reviewers must not be HHMI researchers, and are of
very high caliber (e.g., members of the National Academies). The richness of the feedback is yet
another point of departure between HHMI and NIH practices. Besides the intensity and quality
of the advice generated by the review process, HHMI-funded scientists participate in annual
science meetings during which they can interact with other HHMI investigators. This gives them
access to a deep level of critique, encouragement, ideas, and potential collaborations. Although
NIH-funded researchers receive a critique of their grant applications, these vary widely in quality
and depth. Furthermore, the federal agency does not provide any meaningful feedback between
review cycles.

Finally, an important distinction between the two sources of funding is the unit of selection.
The NIH funds specific projects. Applicants need to map out experiments far into the future, and
have limited flexibility to change course between funding cycles. Together with study sections’
insistence on preliminary results, this has led many NIH grantees to submit research that is already
quite developed. In contrast, HHMI insists on funding “people, not projects.” This allows HHMI
researchers to quickly reallocate effort and resources away from avenues that do not bear fruit.
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TABLE 1 Comparison between the Two Sources of Funding

NIH R01 Grants HHMI Investigator Program

Three- to five-year funding Five-year funding
First review is similar to any other review First review is rather lax
Funds dry up upon nonrenewal Two-year phase-down upon nonrenewal
Some feedback in the renewal process Feedback from renowned scientists
Funding is for a particular project “People, not projects”

The economics literature (e.g., Aghion, Dewatripont, and Stein, 2008) views unfettered control
over one’s research agenda as the key distinguishing feature of innovative activities performed
in academia (relative to the private sector). Variation in the unit of selection reminds us that
the degree of effective control experienced by academic researchers often depends on the arcane
details of funding mechanisms. Although not part of Manso’s (2011) initial analysis, we extend
his model in Appendix A to show that providing the researcher greater latitude in her search
activities encourages exploration. Table 1 summarizes the main differences between the two
sources of funding.

3. Data and sample characteristics

� This section provides a detailed description of the process through which the data used in
the econometric analysis were assembled. In order, we describe (i) the Howard Hughes Medical
investigator sample; (ii) the set of control investigators against which the HHMI scientists will
be compared; and (iii) our metrics of scientific creativity. We also present relevant descriptive
statistics.

� HHMI sample. We begin with a basic description of the criteria necessary for nomination
and appointment as an HHMI investigator. To be eligible, a scientist must be tenured or on the
tenure track at a major research university, academic medical center, or research institute. The
subfields of the life sciences of interest to HHMI investigators are quite broad, but have tended to
concentrate on cell and molecular biology, neurobiology, immunology, and biochemistry. Career-
stage considerations have varied over time, although HHMI typically has not appointed scientists
until they have had enough independent experience so that their work can be distinguished from
that of their postdoctoral or graduate school adviser.

Upon receipt of nominations from participating institutions, HHMI empanels a jury that
reviews these nominations in two sequential steps. In a first step, the number of nominees is
whittled down to a manageable number, mostly based on observable characteristics. For example,
NIH-funded investigators have an advantage because the panel of judges interprets receipt of
federal grants as a signal of management ability. The jury also looks for evidence that the
nominee has stepped out of the shadow cast by his/her mentors: an independent research agenda,
and a “big hit,” that is, a high-impact publication in which the mentor’s name does not appear
on the coauthorship list. In a second step, each remaining nominee’s credentials and future plans
are given an in-depth qualitative look.4 Finally, until recently, appointment contracts varied in
their initial length. Assistant investigators (assistant professors in their home institution) were
appointed for three years; associate investigators, for five years; and investigators, for seven years.5

4 Although an input into this process is a letter grade, the review does not provide a continuous score that could
be used in a regression discontinuity-type framework. Moreover, the cutoff that separates successful from unsuccessful
nominees is endogenous in the sense that it depends on the overall quality of the applicant pool.

5 In our sample, these categories respectively account for 15%, 70%, and 15% of the total number of scientists in
the treatment group. Of course, such variation raises the specter that appointment length might be endogenous. In fact,
the length of the initial term is purely a function of the scientist’s academic rank in his/her home institution.
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Our analysis focuses on HHMI investigators appointed in 1993, 1994, and 1995. We exclude
the three researchers that withdrew from the program voluntarily, leaving us with a sample of 73
scientists.6

� Control sample: early career prize winners. In the absence of information on the runners-
up of the HHMI competitions, we must rely on observable characteristics to create viable control
groups. The main challenge is that HHMI investigators are extremely accomplished at the time of
their appointment. Controls should not only be well matched with HHMI investigators in terms
of fields, age, gender, and host institutions; their accomplishments should also be comparable at
baseline. Our control group is drawn from early career prize winners in the life sciences.

The Pew, Searle, Beckman, Packard, and Rita Allen scholarships are early career prizes that
target scientists in the same life science subfields and similar research institutions as HHMI.
Every year, these charitable trusts provide seed funding to around 60 life scientists in the first two
years of their independent careers. These scholarships are among the most prestigious accolades
that young researchers can receive as they are building a laboratory, but they differ from HHMI
investigatorships in one essential respect: they are structured as one-time grants (e.g., $60,000
a year over four years for the Pew Scholarship; $80,000 a year for three years for the Searle
Scholarship, etc.). These amounts are relatively small, roughly corresponding to 35% of a typical
NIH R01 grant. As a result, these scholars must still attract grants from other funding sources
(especially NIH) if they intend to further their independent research career. After a screen to
eliminate investigators whose age places them outside the age range of the treatment group,
and a second screen to exclude researchers working in idiosyncratic fields, we are left with 393
scientists awarded one of these scholarships.

Before presenting descriptive statistics, it is useful to discuss broad features of the control
group that will influence the interpretation of the treatment effect. The process that results in the
selection of HHMIs and controls is very similar. In both cases, an elite jury of senior scientists is
given the mission to identify individuals with an impressive track record as well as exceptional
promise; in particular, they are not asked to evaluate the merits of an individual project. The main
difference between these programs is that ECPWs are selected at the very start of their independent
career, when it is difficult to distinguish their output from that of their postdoctoral mentor. In
contrast, the modal HHMI investigator stands at the cusp of the tenure decision when s/he is ap-
pointed. As a result, there is more variability in the expected performance of ECPW scholars than
is the case among HHMI investigators but, as we will show, it is possible to cull from this group
a subsample of scientists whose characteristics match well those of HHMI scientists at baseline.

� Measuring scientific creativity. Creativity is a loaded term. The Wikipedia entry informs
us that more than 60 different definitions can be found in the psychological literature, none of
which is particularly authoritative. Furthermore, there exists no agreed-upon metrics or techniques
to measure creative outputs.

The perspective adopted in this article is very pragmatic, and guided by the constraints put
on us by the availability of data. Amabile (1996) suggests that whereas innovation “begins with
creative ideas...creativity by individuals and teams is a starting point for innovation; the first is a
necessary but not sufficient condition for the second.” Although we certainly agree with this view
at a conceptual level, the measurement of scientific productivity—an already well-established
discipline—makes it hard to recognize this nuance. A crucial development in the bibliometric
literature has been the use of citation information to adjust raw publication counts for quality.
Such an approach is not entirely satisfying here, as both “humdrum” and “breakthrough” research

6 One accepted a top administrative position in his/her university (HHMI rules prevent investigators from holding
major administrative posts), and one moved to an institution that had no relationship with HHMI. Yet another wished
to move to a different institution during his/her first appointment. To prevent the eruption of bidding wars over HHMI
investigators, the institute forces such investigators to resign their appointment.
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generate publications and citations. Moreover, some types of publications, like review articles,
tend to generate a number of citations not commensurate with their degree of originality. It
has long been noted that the distributions of publications and citations at the individual level is
extremely skewed, and typically follows a power law (Lotka, 1926). The distribution of citations
at the article level exhibits even more skewness. In this article, we make use of the wide variation
in impact across the publications of a given scientist to compute measures of creative output.
Specifically, we sum the number of distinct contributions that fall into the higher quantiles (top
quartile, top five percentiles, or top percentile) of the article-level distribution of citations for an
individual scientist in a given time period.

One practical hurdle is truncation: older articles have had more time to be cited, and hence
are more likely to reach the tail of the citation distribution. To overcome this issue, we compute a
different empirical cumulative distribution function in each year.7 For example, in the life sciences
broadly defined, an article published in 1980 would require at least 98 citations to fall into the top
five percentiles of the distribution; an article published in 1990, 94 citations; and an article pub-
lished in 2000, only 57 citations (this is illustrated in Figure 1). With these empirical distributions
in hand, it becomes meaningful to count the number of articles that fall, for example, in the top
percentile over a scientist’s career. Counting the number of contributions that fall “in the tail” is
predicated on the idea that exploration is more likely to result in high-impact publications, relative
to exploitation.8 We also assess impact relative to each scientist’s own pre-appointment citation
performance. Because there are not enough data to estimate individual, vintage-specific citation
distributions, we use the entire corpus of work published up until the year of appointment (1993,
1994, or 1995) to compute the citation quantile corresponding to each scientist’s most heavily
cited article. We then count the number of times a scientist exceeds this level after appointment.

We rely on two additional metrics of scientific excellence. We tabulate elections to the
National Academy of Sciences. We also measure the number of students and fellows trained in a
scientist’s lab that go on to win a Pew, Searle, Beckman, Packard, or Rita Allen scholarship.9

HHMI appointments might also fatten the left-hand tail of the outcome distribution, because
pushing the boundaries of one’s field is a riskier endeavor than cruising along an already-
established scientific trajectory. To test this prediction, we compute the number of contributions
that fall in the bottom quartile of the vintage-specific, article-level distribution of citations (about
three citations or fewer).10 We also count the number of times each scientist underperforms,
relative to the pre-appointment article corresponding to his/her lowest citation quantile. Because
HHMI investigators remain eligible for NIH grants, we also examine how funding outcomes
change following appointment, relative to ECPW controls. In particular, our data enable us to
separate whether funding levels differ because of a change in application behavior or because
HHMI investigators’ grant applications are scored differently by NIH’s review panels in the
post-appointment regime.

Finally, explorative behavior should have implications for the direction of research endeavors,
independently of the success or failure of the associated projects. To investigate this issue, we
construct a battery of measures designed to capture potential changes in the scientists’ research
trajectories. Most of these measures use MeSH keywords as an essential input.11 First, we calculate
the average age of MeSH keywords for the published research of every scientist in the sample,

7 We thank Stefan Wuchty and Ben Jones from Northwestern University for performing these computations.
8 We exclude review articles, editorials, and letters from the set when computing these measures. We also eliminate

articles with more than 20 authors.
9 We do not emphasize the results pertaining to these outcomes, because they seem particularly subject to alternative

interpretations: National Academy of Sciences members are elected, and the large contingent of HHMI investigators among
the incumbent membership might skew the results in favor of the treated scientists; similarly, it is plausible that better
students match with HHMI principal investigators (PIs) after their appointment.

10 Too few investigators exit science altogether to make exit a useful indicator of failure.
11 MeSH is the National Library of Medicine’s controlled vocabulary thesaurus; it consists of sets of terms naming

descriptors in a hierarchical structure that permits searching at various levels of specificity. There are 24,767 descriptors
in the 2008 MeSH.
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separately for each year of their independent career. A keyword is said to be born the first year it
appears in any article indexed by PubMed. This measure captures the extent to which a scientist’s
research is novel relative to the world’s research frontier. Equally important is to document the
extent to which scientists place new scientific bets in the post-appointment period (1995–2006)
relative to the pre-appointment period (1986–1994).12 We do so by (i) computing the degree of
overlap in MeSH keywords corresponding to articles published in both periods; (ii) computing
the Herfindahl index of MeSH keywords in both periods (a proxy for variety in topic choice);
and (iii) computing one minus the Herfindahl index of citing journal diversity in both periods
(a measure of impact breadth, rather than impact depth as with the citation quantiles). If HHMI
investigators are induced to explore novel approaches following their appointment, we would
expect this behavior to be reflected in these measures.

� Descriptive statistics. For each scientist, we gathered employment and basic demographic
data from CVs, sometimes complemented by Who’s Who profiles or faculty web pages. We record
the following information: degrees (MD, PhD, or MD/PhD); year of graduation; mentors during
graduate school or postdoctoral fellowship; gender; and department(s).

We obtain publication and citation data from PubMed and Thomson Scientific’s Web of
Science, respectively. Funding information stems from NIH’s Compound Applicant Grant File,
and is available for the entire length of these scientists’ careers. In contrast, grant applications
and their associated priority scores (the “grades” awarded to applications by NIH review panels)
are available solely for years 2003–2008.

Finally, we categorize the type of laboratory run by each scientist into four broad types:
macromolecular labs, cellular labs, organismal labs, and translational labs. For the first three
types, the taxonomy is based on the level of analysis at which most of the research is performed
in the lab. Some scientists work mostly at the molecular level (i.e., in test tubes). This type of
research does not require living cells, and includes fields such as molecular biology, biochemistry,
and structural biology. Others do most of their research at the cellular level (i.e., in Petri dishes),
and ask questions that require living cells. Prominent subfields include subcellular trafficking,
cell morphology, cell motility, and some aspects of cell signalling. Yet others work with model
organisms (mice, flies, monkeys, worms, etc.), asking questions that require, if not a whole
organism, at least the interaction of multiple cells. The translational label is given to labs run by
physician-scientists whose research has both a laboratory and a clinical component.

HHMI and control samples at baseline. Table 2 presents baseline descriptive statistics. Approx-
imately 37% of the HHMI sample is female, versus 20% of the ECPW sample. They are of the
same career age on average, but better funded than ECPW scholars at baseline ($1.45 million vs.
$1.10 million on average). In terms of raw publication output, the pattern is very similar, with
HHMI investigators leading ECPW scholars. The breadth of impact and diversity of topics studied
by these scientists appears similar for both groups of scientists. ECPWs and HHMI investigators
appear to be drawn from a similar set of academic employers in a dimension relevant for HHMI
appointment: the number of slots allocated to their institution at the nomination stage.

Of course, these averages tell only part of the story. Figure 3 A plots the distribution of
baseline publications in the top 5% of the citation distribution. Note that we are only including here
publications for which the scientist is the senior author, that is, where s/he appears in last position
on the authorship list. The distribution for ECPW scholars appears significantly more skewed
than that for HHMI investigators. Similarly, Figure 3B plots the distribution of NIH funding at
baseline for treatment and control scientists; the shapes of these distributions are very similar.

In summary, characteristics that determine selection into the HHMI program are not
especially well balanced at baseline between treatment and control scientists. However, the region
of common support is wide, indicating that it should be possible to create “synthetic” control
scientists who will be good matches for HHMI investigators on these important dimensions.

12 For investigators appointed in 1993 (resp. 1995), the “after” period begins in 1994 (resp. 1996).
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TABLE 2 Descriptive Statistics: Baseline

Standard
Mean Median Deviation Minimum Maximum

Controls (N = 393)
Degree year 1983.689 1984 3.738 1974 1991
Female 0.199 0 0.400 0 1
MD 0.076 0 0.265 0 1
PhD 0.799 1 0.401 0 1
MD/PhD 0.125 0 0.331 0 1
Macromolecular 0.232 0 0.422 0 1
Cellular 0.394 0 0.489 0 1
Organismal 0.265 0 0.441 0 1
Translational 0.104 0 0.305 0 1
No. of nomination slots 2.179 2 1.296 0 8
Cum. NIH funding ($) 1,106,790 676,249 1,375,588 0 11,634,552
Highest citation quantile 40.001 36 24.352 1 100
Lowest citation quantile 99.202 100 2.748 62 100
Cum. no. of pubs. 24.775 20 20.764 2 200
Cum. no. of pubs. in the bottom 25% 0.647 0 1.410 0 15
Cum. no. of pubs. in the top 25% 18.718 15 14.146 0 123
Cum. no. of pubs. in the top 5% 9.647 8 7.822 0 51
Cum. no. of pubs. in the top 1% 3.712 3 3.875 0 27
Average MeSH age 23.376 23 2.808 18 35
Citing journal diversity, 1986–1994 0.963 1 0.020 0.837 0.992

HHMIs (N = 73)
Degree year 1983.723 1984 4.002 1974 1991
Female 0.369 0 0.486 0 1
MD 0.082 0 0.274 0 1
PhD 0.753 1 0.431 0 1
MD/PhD 0.164 0 0.370 0 1
Macromolecular 0.288 0 0.453 0 1
Cellular 0.329 0 0.470 0 1
Organismal 0.274 0 0.446 0 1
Translational 0.110 0 0.313 0 1
Nb. of nomination slots 2.194 2 1.222 0 8
Cum. NIH funding ($) 1,502,810 1,005,176 1,768,341 0 7,852,110
Highest citation quantile 33.626 28 23.197 1 89
Lowest citation quantile 99.762 100 0.847 93 100
Cum. no. of pubs. 32.657 23 27.399 3 172
Cum. no. of pubs. in the bottom 25% 0.627 0 0.902 0 4
Cum. no. of pubs. in the top 25% 26.866 19 23.398 3 148
Cum. no. of pubs. in the top 5% 16.910 13 16.889 1 119
Cum. no. of pubs. in the top 1% 8.478 5 10.224 0 73
Average MeSH age 22.824 23 2.253 17 29
Citing journal diversity, 1986–1994 0.965 1 0.018 0.921 0.992

Career achievement. Although the differences between treatment and control samples are
relatively modest at baseline, their magnitude increases when we examine achievements over
the entire career. In Table 3, we see that HHMI scientists publish many more articles than ECPW
scientists, with this output of higher quality, regardless of the quantile threshold one chooses to
focus on. Of course, these accomplishments should be viewed in light of HHMI investigators’
funding advantage: although they have garnered fewer resources from NIH by the end of the
sample period than ECPW scholars, they also benefit from HHMI’s relatively lavish research
budgets. In fact, HHMI scientists apply less for R01 grants than controls who have no alternative
sources of funding: 3.2 versus 5.1 applications on average between 2003 and 2008. On the other
hand, conditional on applying, these same applications are judged more harshly by NIH study
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TABLE 3 Descriptive Statistics: Career Achievement

Standard
Mean Median Devision Minimum Maximum

Early career prize winners (N = 393)
Early career prize winners trained 0.229 0 0.630 0 1
Nobel Prize winner 0.003 0 0.050 0 1
Elected NAS member 0.041 0 0.198 0 1
Career no. of articles 65.003 53 43.444 11 314
Career no. of citations 4,489 3,504 3,489 242 21,448
Career no. of articles in the top 25% 47.952 40 30.829 7 212
Career no. of articles in the top 5% 22.214 18 15.760 0 96
Career no. of articles in the top 1% 7.926 6 7.410 0 38
Number of post-appointment hits 4.087 2 6.150 1 69
Number of post-appointment flops 3.448 2 5.287 0 41
Career NIH funding ($) 5,229,193 4,805,193 3,458,834 160,249 23,350,194
Avg. length (in years) for R01 grants 3.680 3.500 1.151 2 6
No. of R01 grant apps., 2003–2008 5.119 4 3.339 1.000 23.000
Avg. priority score, 2003–2008 161.842 158 36.637 100.000 283.000
Citing journal diversity, 1995–2006 0.968 1 0.025 0.667 0.992
Normalized MeSH keyword overlap 0.104 0 0.062 0 0.462

HHMI investigators (N = 73)
Early career prize winners trained 1.137 0 2.388 0 1
Nobel Prize winner 0.014 0 0.117 0 1
Elected NAS member 0.329 0 0.473 0 1
Career no. of articles 95.521 83 56.126 17 321
Career no. of citations 10,550 6,672 14,542 798 117,401
Career no. of articles in the top 25% 78.219 69 48.843 10 284
Career no. of articles in the top 5% 45.562 38 33.863 4 224
Career no. of articles in the top 1% 21.014 16 21.270 0 144
Number of post-appointment hits 5.967 4 8.663 1 62
Number of post-appointment flops 3.483 1 5.890 0 32
Career NIH funding ($) 4,331,909 3,587,172 3,368,619 0 15,917,327
Avg. length (in years) for R01 grants 3.013 2.500 1.414 2 5
No. of R01 grant apps., 2003–2008 3.217 2 2.358 1.000 10.000
Avg. priority score, 2003–2008 178.289 173 33.405 111.500 326.000
Citing journal diversity, 1995–2006 0.975 1 0.013 0.921 0.993
Normalized MeSH keyword overlap 0.085 0 0.037 0 0.188

sections, because they are associated with higher priority scores.13 Among our “direct” measures
of explorative behavior, only the average level of normalized keyword overlap appears to be lower
for HHMI investigators, compared with ECPW controls in these univariate comparisons.

When we focus on discrete career accolades, we observe an even greater contrast between
HHMI and control scientists. Approximately a third of the HHMI investigators are elected
members of the National Academy of Sciences, versus 4.1% for the control sample. Our 73
HHMI investigators collectively train 83 future early career prize winners (an average of 1.13
per scientist), whereas the control investigators are mentors to 90 such “young superstars” (an
average of 0.23 per scientist).

4. Econometric considerations

� In order to estimate the treatment effect of the HHMI investigator program, we must confront
a basic identification problem: appointments are driven by expectations about the creative potential
of scientists, and selected investigators might have experienced very similar outcomes had they

13 Priority scores vary between 100 and 500, with lower scores indicating applications with a higher chance of
funding.

C© RAND 2011.



540 / THE RAND JOURNAL OF ECONOMICS

not been appointed. As a result, traditional econometric techniques, which assume that assignment
into the program is random, cannot recover causal effects.

� Propensity-score weighting. As an attempt to overcome this challenge, we estimate the
effects of the program using inverse probability of treatment-weighted estimation (Robins and
Rotnitzky, 1995; Hirano and Imbens, 2001; Busso, DiNardo, and McCrary, 2008). Suppose we
have a random sample of size N . For each individual i in this sample, let TREATi indicate whether
s/he received treatment. Using the counterfactual outcome notation (e.g., Rubin 1974), let y1

i be
the value of the outcome y that would have been observed had i received treatment, and y0

i the
value of the outcome had i been assigned to the control arm of the experiment. In addition, we will
assume that we observe a vector of covariates denoted by X = (W , Z). The variables included in
W are assumed to be strictly exogenous; in contrast, the vector Z includes pretreatment variables
such as lagged outcomes.

For each individual i, the treatment effect is y1
i − yi

0. For the population as a whole, we are
interested in two distinct estimands, the average treatment effect (ATE) and the average treatment
effect on the treated (ATT). Formally,

βATE = E
[
y1

i − y0
i

]

βATT = E
[
y1

i − y0
i

∣∣ TREATi = 1
]
.

Whereas ATE elucidates what would be the average effect of treatment for an individual picked
at random from the population, ATT measures the average effect for the subpopulation that is
likely to receive treatment. The difficulty in identifying these coefficients is identical; however,
for a given individual, we observe y1 or y0, but never both.

Following Rosenbaum and Rubin (1983), we make the “selection on observables” or
unconfoundedness assumption:

TREAT � (y1; y0; Z ) | X ,

where the � sign denotes statistical independence. Let the propensity score, the conditional
probability of treatment, be denoted by p(x) = Prob(TREATi = 1 | Xi = x); further, we assume
that 0 < p(x) < 1. These admittedly strong assumptions enable the identification of ATE and
ATT; the two effects can be recovered by a two-step procedure relying on a first-step estimate of
the propensity score p̂(x). In the second step, the outcome equation

yi = β0 + β
′
1Wi + β2TREATi + εi (1)

is estimated by weighted least squares or weighted maximum likelihood (depending on the type
of dependent variable), where the weights are simple functions of the estimated propensity score:

wAT E
i = TREATi

p̂(xi )
+ 1 − TREATi

1 − p̂(xi )

wAT T
i = TREATi + (1 − TREATi ) · p̂(xi )

1 − p̂(xi )
.

In order to develop the intuition for this weighting strategy, we examine the formula
corresponding to wATE a bit more closely. Each factor in the denominator is the probability that
an individual received her own observed treatment, conditional on her past history of “prognosis
factors” for treatment. Suppose that all relevant variables are observed and included in X . Then,
weighting effectively creates a pseudopopulation in which X no longer predicts selection into
treatment and the causal association between treatment and outcome is the same as in the original
population.14

14 One might worry about statistical inference, because the weights used as inputs to estimate the outcome equation
are themselves estimated. In contrast to two-step selection correction methods, the standard errors obtained in this case
are conservative (Wooldridge, 2002).
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� Assessing unconfoundedness. Propensity-score weighting relies on the assumption that
selection into treatment occurs solely on the basis of factors observed by the econometrician.
This will appear to many readers as a strong assumption—one that is unlikely to be literally true.
Despite the strength of the assumption, we consider it a useful starting point. Past research in
the program evaluation literature has shown that techniques that assume selection on observables
perform well (in the sense of replicating an experimental benchmark) when (i) researchers use a
rich list of covariates to model the probability of treatment; (ii) units are drawn from similar labor
markets; and (iii) outcomes are measured in the same way for both treatment and control groups
(Dehejia and Wahba, 2002; Smith and Todd, 2005). Conditions (ii) and (iii) are trivially satisfied
here, but one might wonder about condition (i), namely the extent to which the analysis accounts
for the relevant determinants of HHMI appointment.

Through interviews with HHMI senior administrators, we have sought to identify the criteria
that increase the odds of appointments, conditional on being nominated. As described earlier,
the institute appears focused on making sure that its new investigators have stepped out of the
shadow cast by their graduate school or postdoctoral mentors. They also want to ensure that these
investigators have the leadership and managerial skills required to run a successful laboratory,
and interpret receipt of NIH funding as an important signal of possessing these skills. In practice,
we capture the “stepping out” criteria by counting the number of last-authored, high-impact
contributions the scientist has made since the beginning of his/her independent career.15 We
proxy PI leadership skills with a measure of cumulative R01 NIH funding at baseline. Of course,
our selection equation also includes important demographic characteristics, such as gender,
laboratory type, degree, and career age.

� Semiparametric difference in differences. An alternative methodology is to rely on
within-scientist variation to identify the program’s treatment effect. Scientist fixed effects purge
estimates from any influence of unobserved heterogeneity that is constant over time. However, for
difference-in-differences (DD) estimation to be valid, it must be the case that the average outcome
for the treated and control groups would have followed parallel paths over time in the absence
of treatment. This assumption is implausible if pretreatment characteristics that are thought to
be associated with the dynamics of the outcome variable are unbalanced between treatment and
control units. Below, we provide strong evidence that selection into the program is influenced
by transitory shocks to scientific opportunities: HHMI scientists have higher output in the years
immediately preceding their appointment.

In such a case, Abadie (2005) proposes a semiparametric difference-in-differences (SDD)
estimator that combines the advantages of adjustment for observed heterogeneity with differenc-
ing. The idea is to apply propensity-score reweighting not to the levels of outcome y as above, but
to the differences in outcome between the post- and pretreatment periods. Under some additional
regularity conditions, the ATT is identified and can be recovered by weighting ypost − ypre using

wSDD
i = TREATi − p̂(xi )

π · (1 − p̂(xi ))
,

where π denotes the unconditional odds of treatment Prob(TREATi = 1). Intuitively, the weights
create a pseudopopulation of untreated scientists that follows similar dynamics to the treated
group in the pretreatment period. The SDD estimator then subtracts the change in outcomes
for treated scientists by the change in outcome for this pseudopopulation of control scientists.
Inference is performed using a nonparametric pairwise bootstrap procedure with 500 replications.

The SDD estimates are still vulnerable to the critique that time-varying sources of unobserved
heterogeneity could bias the effects, but they greatly narrow the scope of selection concerns.

15 A robust social norm in the life sciences systematically assigns last authorship to the principal investigator,
first authorship to the junior author who was responsible for the actual conduct of the investigation, and apportions the
remaining credit to authors in the middle of the authorship list, generally as a decreasing function of the distance from
the extremities of the list.
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Because they rely on within-scientist variation, fixed personality differences that impact the
creative potential of individual scientists (such as conscientiousness [Charlton, 2009] or desire
for intellectual challenge [Sauermann and Cohen, 2010]) do not jeopardize a causal interpretation
of the effect of HHMI appointment. Rather, one might worry that the appointment committee is
able to recognize and select for “exploratory tendencies” before they manifest themselves in the
researcher’s published work. If this were the case, these latent explorers might have branched out
in new directions even in the absence of their HHMI appointment. Although we cannot rule out
this possibility, we take solace in the fact that ECPW scholars and HHMI investigators are very
well matched at baseline along the dimensions of topic novelty and citation breadth, dimensions
that we argue are good proxies for exploration. Furthermore, ECPW scholars are selected through
a very similar process at an earlier career stage; given that the same individuals, or at least the
same type of individuals, often serve on these panels, it is unlikely that the HHMI committee is
more skilled at identifying those scientists that are “itching to branch out.”

5. Results

� Our presentation of results is organized in three sets of tables. Table 4 pertains solely to
HHMI investigators, and validates empirically some of the purported distinctive features of the
program. Table 5 presents evidence on the determinants of HHMI appointment. Finally, Tables 6–8
present estimates of the program’s effects.

� HHMI appointments: rhetoric and practice. We begin by validating our claims about the
terms of the HHMI investigator award. The unconditional probability of termination at the end
of the first appointment term is 15.5%, versus 28.33% at the end of the second appointment term
(conditional on being renewed once). However, our contention that the first review is laxer than
the second has implications for the conditional probability of first and second reappointment.

TABLE 4 Sensitivity of HHMI Reappointment to Scientific Output

First Second First Second First Second First Second
Reappt. Reappt. Reappt. Reappt. Reappt. Reappt. Reappt. Reappt.

(1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b)

Pubs −0.001 0.024∗∗

(0.001) (0.005)
Pubs in the top 25% −0.002 0.027∗∗

(0.002) (0.007)
Pubs in the top 5% −0.003 0.027∗∗

(0.003) (0.010)
Pubs in the Top 1% −0.003 0.053∗∗

(0.006) (0.020)
Female 0.039 0.022 0.040 0.035 0.036 0.053 0.045 0.086

(0.100) (0.114) (0.102) (0.115) (0.105) (0.121) (0.107) (0.119)
Associate 0.028 0.096 0.029 0.076 0.023 0.128 0.027 0.153

(0.100) (0.104) (0.100) (0.117) (0.097) (0.121) (0.099) (0.119)
Full 0.070 0.001 0.066 −0.026 0.059 0.074 0.057 0.098

(0.114) (0.146) (0.112) (0.192) (0.110) (0.206) (0.110) (0.213)

No. scientists 71 60 71 60 71 60 71 60
Log quasi-likelihood −27.497 −19.841 −27.653 −21.251 −27.674 −24.150 −27.895 −24.176
Pseudo-R2 0.102 0.338 0.097 0.291 0.096 0.194 0.089 0.193

Note: The dependent variable is the probability of being reappointed, whether at the end of the first term (models
1a, 2a, 3a, and 4a) or at the end of the second term (models 1b, 2b, 3b, and 4b) among 71 HHMI investigators who
did not terminate their appointment voluntarily. The sample relevant to specifications 1b, 2b, 3b, and 4b comprises only
60 observations because 11 investigators were either not renewed at the end of the first appointment period or resigned
their posts voluntarily. Estimates correspond to marginal effects from logit specifications, with robust standard errors in
parentheses. †p < 0.10, ∗p < 0.05, ∗∗p < 0.01.
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TABLE 5 Determinants of Selection into the HHMI Program

(1) (2) (3) (4) (5)

Cum. no. pubs as PI 0.006∗∗ 0.002
(0.002) (0.014)

Cum. no. pubs in top 25% as PI 0.013∗∗ 0.003
(0.002) (0.006)

Cum. no. pubs in top 5% as PI 0.023∗∗ 0.015†

(0.004) (0.008)
Cum. no. pubs in top 1% as PI 0.039∗∗ 0.033∗∗

(0.008) (0.009)
NIH funding 0.004 −0.018 −0.015 −0.001 −0.021

(0.024) (0.019) (0.018) (0.015) (0.022)
Female 0.121∗∗ 0.123∗∗ 0.119∗∗ 0.122∗∗ 0.125∗∗

(0.036) (0.035) (0.034) (0.034) (0.034)
PhD −0.082 −0.078 −0.058 −0.032 −0.049

(0.087) (0.096) (0.104) (0.100) (0.110)
MD/PhD −0.048 −0.053 −0.022 0.007 −0.017

(0.082) (0.087) (0.092) (0.089) (0.097)
No. of nomination slots −0.010 −0.011 −0.008 −0.006 −0.007

(0.014) (0.013) (0.012) (0.012) (0.012)
Macromolecular lab −0.039 −0.041 −0.024 −0.030 −0.028

(0.043) (0.042) (0.041) (0.042) (0.042)
Organismal lab 0.002 0.004 0.002 −0.004 0.001

(0.046) (0.045) (0.044) (0.044) (0.044)
Translational lab −0.014 −0.005 0.008 0.013 0.010

(0.085) (0.087) (0.090) (0.083) (0.090)

Pseudo-R2 0.074 0.111 0.143 0.133 0.160
No. of scientists 466 466 466 466 466

Note: The dependent variable is the probability of being appointed an HHMI investigator. Estimates correspond to
marginal effects from logit specifications, with robust standard errors in parentheses. Achievement at baseline is measured
as the cumulative number of publications that fall in a particular citation bin, considering only those articles in which
the scientist appears in last position on the authorship list, that is, is clearly identified as the principal investigator of a
laboratory. All models also include year of highest degree indicator variables (coefficients not reported).

†p < 0.10, ∗p < 0.05, ∗∗p < 0.01.

Specifically, if the perception of the program’s administrators and investigators is accurate, the
probability of second reappointment should be more responsive to achievements during the
preceding term than the probability of first reappointment. Table 4 provides evidence consistent
with this hypothesis. It reports estimates from logit models of reappointment as explained by
various indicators of achievement during the preceding term. We find a consistent pattern,
regardless of the achievement variable on the right-hand side: higher achievement significantly
increases the likelihood of renewal at the end of the second term, but not at the end of the first
term. Moreover, the marginal effect for blockbuster articles produced in the previous period is
twice as large as the marginal effect for total publication output. This is consistent with the idea
that HHMI review panels care more about whether investigators “transform their fields” than they
care about counting lines on their CVs.

From these results, we conclude that the HHMI program conforms both in its stated and
actual practices with the features that Manso (2011) predicts should encourage exploration.

� Determinants of HHMI appointment. We now turn to the observable determinants of
selection into the HHMI program (Table 5). We present the results from logit specifications that
include demographic characteristics as controls, as well as cumulative NIH funding at baseline,
and achievements as PIs in the pre-appointment period. Among the demographic characteristics,
the only consistent pattern is the higher appointment probability of female scientists. Consistent
with the qualitative evidence on the selection process, we find that the number of “hit articles”
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TABLE 6 Effects of HHMI Appointment on Citation Impact (N = 417 Scientists)

Achievement “Naive”
Benchmark Metric X-Section ATE ATT DD SDD

Universal article-level All pubs 0.419∗∗ 0.235∗∗ 0.227∗ 0.178∗ 0.333∗∗

citation distribution (0.076) (0.078) (0.088) (0.072) (0.109)
Top 25% 0.514∗∗ 0.297∗∗ 0.305∗∗ 0.212∗∗ 0.268∗

(0.079) (0.085) (0.087) (0.074) (0.114)
Top 5% 0.733∗∗ 0.482∗∗ 0.510∗∗ 0.293∗∗ 0.439∗∗

(0.093) (0.111) (0.102) (0.108) (0.161)
Top 1% 0.964∗∗ 0.663∗∗ 0.817∗∗ 0.363∗ 0.678∗∗

(0.133) (0.138) (0.133) (0.148) (0.240)
Bottom 25% 0.181 0.094 0.154 0.187 0.155

(0.128) (0.131) (0.135) (0.292) (0.887)
Relative to the scientist’s own citation Number of Hits 0.401∗∗ 0.299∗ 0.356∗∗

impact pre-appointment (0.125) (0.128) (0.128)
Number of Flops 0.341∗ 0.272∗ 0.317†

(0.146) (0.121) (0.162)

Note: The first five lines pertain to the analysis of citation impact using the total number of citations for the universe of
all articles in the life sciences field, as coded by ISI/Web of Science. Each coefficient corresponds to the treatment effect of
HHMI appointment in a specification that regresses output on treatment status, five age indicator variables (5–10 years of
career age, 10–15 years, 15–20 years, 20–25 years, and 25 years and more of career age), and year indicator variables in all
models. The cross-sectional models (corresponding to the first three columns) also include three lab indicator variables, a
gender indicator variable, and two degree-type indicator variables (coefficients not reported). Estimates derive from quasi-
maximum likelihood (QML) Poisson estimation, with robust standard errors in parentheses, clustered around scientist
(X-section, ATE, ATT, and DD columns); bootstrapped standard errors are reported for the semi-parametric difference-
in-differences estimates. All specifications except the naive cross-sections and the plain difference-in-differences include
regression weights computed using fitted values for the probability of HHMI appointment estimated in Table 5. The
weights differ depending on whether ATT or ATE is the effect of interest, and whether the focus is on generating a
between-scientist comparison (ATE and ATT columns) or a within-scientist comparison (SDD column). See Section 4
for more details.

The last two lines use each scientist’s own citation impact in the pre-appointment period as a benchmark. We code the
highest (resp. lowest) quantile of the article-level citation distribution for any article published by each scientist prior
to appointment. We then compute the number of hits (resp. flops) for each scientist by counting the number of articles
whose citation quantile places them above (resp. below) this level in the post-appointment period. The corresponding
specifications also include year of highest degree indicator variables, three lab-type indicator variables, a gender indicator
variable, two degree-type indicator variables, as well as the pre-appointment highest or lowest pre-appointment quantile
mentioned above. Because we use the whole pre-appointment citation data to calculate the benchmark, there are no DD
or SDD specifications when assessing citation impact relative to the scientists’ own prior performance.

†p < 0.10, ∗p < 0.05, ∗∗p < 0.01.

at baseline is highly predictive of appointment. In contrast, the level of funding appears to play
no role in the odds of selection. Using the most saturated model of selection (column 5), we
find that the region of common support excludes 4 HHMI investigators whose superlative record
of achievement prior to appointment makes them difficult to compare to any member of the
control group. Conversely, 45 early career prize winners have a very low predicted probability
of appointment, mostly because they do not produce an impactful article after they set up their
lab. In all that follows, we have excluded from the estimation sample these 49 scientists. This
ensures the validity of the common support assumption, which is necessary to identify the ATE
or the ATT using inverse probability of treatment-weighted estimation. The final sample contains
information on 417 scientists (69 HHMIs and 348 controls).

� Effects of HHMI appointment on citation impact. The first four lines of Table 6
report the effect of the program on the rate of publication output falling in distinct citation
quantile bins: all publications, publications in the top quartile, in the top five percentiles, and
in the top percentile. For each outcome variable, we present five coefficients corresponding to
different ways of assessing the program’s effects. The first column reports naive cross-sectional
results, which ignore the selection process. The second and third columns weight the outcome
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equations by the inverse probability of treatment so as to recover the ATE, and the ATT under
unconfoundedness. The fourth column reports simple conditional fixed-effects estimates, a naive
DD. Finally, the fifth column reports results corresponding to SDD estimates as in Abadie
(2005). Because the SDD estimator adjusts the treatment effect for selection on observables
while purging the estimates of time-invariant unobserved heterogeneity, it is our preferred
specification.

Following a long-standing tradition in the study of scientific and technical change, the
cross-sectional, ATE, ATT, and DD effects are estimated on the full panel using quasi-maximum
likelihood Poisson.16 In contrast, the SDD effects stem from a two-step procedure detailed in
Appendix C.

The naive cross-sectional estimate is always the largest in magnitude, and using propensity-
score weighting reduces the magnitude of the effect by approximately a third. In contrast, the DD
estimate is systematically lower than the SDD estimate, as is possible if HHMI investigators and
controls are on different output trends even before appointment. The magnitudes of the effects
are large. For instance, the SDD estimates imply that the HHMI program increases the rate at
which appointed scientists produce publications by e.333 − 1 = 39%; the figure for articles in the
top 5% of the citation distribution is 55%; and for articles in the top 1%, a 97% increase. The
observed pattern is that the program has a bigger effect on the upper tail of the distribution of
accomplishments, regardless of the estimation method used.

Figure 4 display the time path of the average publication count and top 5% outcome for
HHMIs and ECPWs separately. While computing the averages, we weight each control scientist’s
outcome by his/her inverse probability of being selected into the program, while leaving the
treated scientists’ outcomes unchanged. Loosely, Figures 4A and 4B provide a graphical intuition
for the SDD estimates: they correspond to the difference between the change in outcomes for
the HHMI investigators and for a pseudopopulation of control scientists matched on observables.
A necessary condition for the plausibility of this exercise is that the treated and control groups
display parallel output trends prior to the appointment event. This appears to be the case here.

Interestingly, for three years after appointment, the outcomes for treated and control scientists
continue to track each other closely. Figure 4B even suggests that the control group (appropriately
selected on observables) briefly outpaces the treatment group following the appointment,
consistent with Manso’s (2011) theory which predicts both slower and more variable returns
under an exploration incentive scheme. This difference is not statistically significant, however,
which is perhaps unsurprising given our sample’s relatively small size. HHMI investigators’
output begins to diverge from that of ECPWs only four to five years after appointment, and this
divergence is more marked in Figure 4B.

We have explored the hypothesis of a temporary, post-appointment slowdown qualitatively
by asking eight current and former HHMI investigators about the “retooling” necessary to take
advantage of the freedom afforded by the program. This idea resonated with these scientists, but
it also seems clear that these lags are very heterogeneous across labs. Some of them mentioned
waiting until their first renewal before branching out; others were clearly itching to begin new
projects, for example by focusing on a new disease (autism vs. Huntington’s), model organism
(mice vs. yeast), or discipline (chemistry vs. cell biology). Still others described a less deliberate
exploration process whereby the logic of their traditional research projects opened up novel
opportunities, which they could more easily take advantage of as HHMI investigators.

� Effects of HHMI appointment on failure. It seems intuitive that exploration would
lead scientists to “strike out” more often. Measuring failure is difficult, because it might lead
researchers to abort projects altogether. Here we ask whether HHMI investigators produce more

16 Because the Poisson model is in the linear exponential family, the coefficient estimates remain consistent as long
as the mean of the dependent variable is correctly specified (Wooldridge, 1996; Santos Silva and Tenreyro, 2006). Further,
‘robust’ standard errors are consistent even if the underlying data-generating process is not Poisson.
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TABLE 7 Effects of HHMI Appointment on NIH Funding

Dependent Variable “Naive” X-Section ATE ATT DD SDD

NIH funding ($) −0.404∗∗ −0.549∗∗ −0.497∗∗ −0.546∗∗ −0.426∗∗

(0.095) (0.099) (0.094) (0.105) (0.115)
No. of R01 Apps. −0.521∗∗ −0.603∗∗ −0.486∗∗

(0.122) (0.126) (0.122)
Avg. priority score for R01 −0.077∗∗ −0.075∗∗ −0.057†

(0.029) (0.025) (0.032)

No. of scientists 417 417 417 417 417

Note: Each coefficient corresponds to the treatment effect of HHMI appointment in a specification that regresses
the dependent variable on treatment status, five age indicator variables (5–10 years of career age, 10–15 years, 15–20
years, 20–25 years, and 25 years and more of career age), and year indicator variables. The cross-sectional models
(corresponding to the first three columns) also include three lab indicator variables, a gender indicator variable, and
two degree-type indicator variables (coefficients not reported). Estimates derive from QML Poisson estimation, with
robust standard errors in parentheses, clustered around scientist (X-section, ATE, ATT, and DD columns); bootstrapped
standard errors are reported for the semiparametric difference-in-differences estimates. All specifications except the naive
cross-sections and the plain difference-in-differences include regression weights computed using fitted values for the
probability of HHMI appointment estimated in Table 5. The weights differ depending on whether ATT or ATE is the
effect of interest, and whether the focus is on generating a between-scientist comparison (ATE & ATT columns) or a
within-scientist comparison (SDD column). Because grant application data are only available for the period 2003–2008,
the determinants of application rates and priority scores are estimated using a single cross-section that pools together all
of the data for the corresponding period. See Section 4 for more details.

†p < 0.10, ∗p < 0.05, p < 0.01.

articles of little import, relative to controls. To answer this question, we examine whether HHMI
appointment increases the rate of publications that fall in the bottom quartile of citations. Relative
to ECPW scholars, HHMI investigators indeed fail more often, regardless of estimation method;
some of these estimates are large in magnitude, but they are also imprecisely estimated. The lack
of statistical significance is not terribly surprising, because relatively few of the articles produced
by these elite scientists will fail to garner the three citations that correspond to the 25th percentile
of the citation distribution in most years.

An alternative approach is to use these scientists’ own citation impact prior to appointment
to assess their performance in the post-appointment regime, rather than a universal citation
benchmark as above. The corresponding results are displayed in the last two lines of Table 6.
The coefficient estimates pertain to the HHMI treatment effect in cross-sectional comparisons
where the rates of “hit” and “flop” publications are modelled using quasi-maximum likelihood
Poisson. To compute the number of hits, we count the number of times each scientist publishes an
article whose citation quantile places it above the highest citation quantile of any article published
prior to appointment. Symmetrically, the number of flops is computed by counting the number of
times each scientist publishes an article whose citation quantile places it below the lowest citation
quantile of any article published prior to appointment (further details are provided in Appendix
D). Because we use citation data for the entire pre-appointment period to compute individual
citation benchmarks, there are no DD and SDD specifications for these two outcomes.

We find robust statistical evidence that HHMI appointment increases the frequency of both
hits and flops. We focus on the latter result, because an increased rate of failure under an
exploration incentive scheme is a strong prediction of the theory. It is also more challenging to
reconcile with the view that HHMI simply picks extraordinarily talented scientists and then takes
credit for their accomplishments. Of course, we cannot rule out a more nuanced selection story
whereby the elite scientists who serve as judges in HHMI competitions are skilled at identifying
scientists destined to push the scientific frontier outward.

� Effects of HHMI appointment on NIH grant outcomes. In Table 7, we document a
negative association between HHMI appointment and NIH funding that holds both in the cross-
sectional and the within-scientist dimensions of the data. This effect corresponds in large part to
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TABLE 8 Effects of HHMI Appointment on the Direction of Research

Impact of Treatment on: Dependent Variable X-Section ATE ATT DD SDD

Topic novelty Avg. MeSH keyword age −0.028∗∗ −0.014 − 0.016† −0.020 −0.027∗

(0.009) (0.009) (0.009) (0.013) (0.013)
Change in research Normalized MeSH −0.258∗∗ −0.206∗∗ −0.259∗∗

direction keyword overlap (0.060) (0.058) (0.059)
Breadth of impact Citing journal diversity index 0.223∗∗ 0.192∗∗ 0.231∗∗

(0.071) (0.060) (0.073)

No. of scientists 417 417 417 417 417

Note: For the analysis of the determinants of topic novelty, each coefficient corresponds to the treatment effect of
HHMI appointment in a specification that regresses measures of scientific novelty on treatment status, five age indicator
variables (5–10 years of career age, 10–15 years, 15–20 years, 20–25 years, and 25 years and more of career age),
and year indicator variables in all models. The cross-sectional models (corresponding to the first three columns) also
include three lab indicator variables, a gender indicator variable, and two degree-type indicator variables (coefficients not
reported). Estimates derive from QML Poisson estimation, with robust standard errors in parentheses, clustered around
scientist (X-section, ATE, ATT, and DD columns); bootstrapped standard errors are reported for the semiparametric
difference-in-differences estimates.

For the other two outcomes (keyword overlap and diversity of citing journals), each coefficient corresponds to the
treatment effect of HHMI appointment on various measures of an investigator’s scientific direction in the “after” period
(1995–2006). All models include as independent variables year of highest degree indicator variables, three lab type
indicator variables, a gender indicator variable, and two degree-type indicator variables (coefficients not reported). Also
included is an offset for the dependent variable in the “before” period (1986–1994). Because all of the dependent variable
are bounded inclusively by 0 and 1, estimates stem from a QML fractional logit procedure (Papke and Wooldridge, 1996),
with robust standard errors in parentheses. All specifications except the naive cross-sections and the plain difference-in-
differences include regression weights computed using fitted values for the probability of HHMI appointment estimated
in Table 5. The weights differ depending on whether ATT or ATE is the effect of interest; and whether the focus is on
generating a between-scientist comparison (ATE and ATT columns), or a within-scientist comparison (SDD column).
See Section 4 for more details.

†p < 0.10, ∗p < 0.05, ∗∗p < 0.01.

a mechanical substitution of HHMI resources for traditional NIH funding: the number of R01
grant applications by HHMI investigators is, on average, only about 60% of the corresponding
number for ECPW scholars. But application behavior does not on its own explain the decline
in NIH funding; conditional on applying, applications from HHMI scientists receive higher
priority scores (i.e., are judged more harshly by study sections). When combined with the results
pertaining to citation impact, this evidence supports the view that the punctiliousness of the NIH
peer-review process crowds out scientific exploration.17

� Effects of HHMI appointment on the direction of research. So far, our presentation of
results has conflated intensity of exploration with the rate at which tail outcomes are produced.
But taken literally, the Manso (2011) model does not predict that “pay-for-future performance”
incentives will result in better outcomes; it simply asserts that agents subject to those incentives
will increase their rates of exploration, relative to agents who receive piece rates. This is the
hypothesis we examine in Table 8. Choosing less-traveled scientific avenues could also leave
trails in the content of what scientists publish, and in particular affect the keywords that tag their
publications. We first focus on whether HHMI investigators are prone to define the scientific
frontier, by examining the vintage of the MeSH keywords in their output. In our analysis, a
keyword is born the earliest year in which it appears in any publication indexed by PubMed.
We then compute the average age of all keywords or all keyword pairs in each scientist’s yearly
output. Table 8 shows that HHMI investigators indeed tackle more novel topics; the coefficient
estimates are negative regardless of estimation method.

Next, we ask whether evidence exists that HHMI investigators alter the direction of their
scientific trajectory following their appointment. We first examine the program’s effect on the

17 More prosaically, they might put less effort into preparing these proposals, because they benefit from the safety
of Hughes funding.
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number of unique publication keywords that overlap between the set of articles published in the
“before” period (1986–1994) and the “after” period (1998–2006). This measure is then normalized
by the number of unique keywords used in the after period. For each control group, we report
both the results of a “naive” specification and the results of two specifications which incorporate
inverse probability of treatment weights corresponding to ATE and ATT. Because the dependent
variable is a proportion, we estimate these models using the quasi-maximum likelihood fractional
logit estimator of Papke and Wooldridge (1996). Relative to ECPW scholars, HHMI investigators
exhibit unambiguously lower overlap in keyword use. The effects are statistically significant, and
imply that HHMI appointment is associated with about a 10% lower rate of overlap.

Our last test focuses on the breadth—rather than the depth—of impact for these scientists’
publications. To do so, we examine the journals in which citing articles appear, and compute the
Herfindahl of journal concentration H . We find that HHMI investigators exhibit higher levels
of (1 − H) in the post-appointment period, that is, their work is cited by a more diverse set of
journals than the articles published by ECPWs. Overall, the results in Table 8 are consistent with
the idea that HHMI investigators broaden their research agenda in the post-appointment period,
a necessary condition for exploration.

� Incentives versus alternative mechanisms. Even if our estimates of HHMI appointments’
treatment effects can be given a causal interpretation, ascribing them to the program’s incentive
features requires an interpretive leap.

First, we are unable to ascertain the extent to which the program increases productivity rather
than output. It is hard to compare directly HHMI and NIH levels of funding, because the two
programs are structured in a different fashion.18 Yet, it appears likely that, per dollar of funding,
HHMI investigators do not publish more articles than researchers funded by the NIH. Of course,
if the supply of genuinely creative ideas is very inelastic, then publications per dollar of funding
will not adequately measure researchers’ productivity.19 We also note that the results pertaining
to the diversity of experimentation are less vulnerable to this critique, because they essentially
hold output constant.

Second, the prestige conferred by HHMI appointment might have independent effects on
scientists’ achievements, either by increasing exposure to their research or through a dynamic of
ascription that has long been the focus of sociologists of science (Merton, 1968). Azoulay, Stuart,
and Wang (2010) provide estimates of the HHMI investigator program’s “anointment effects” by
examining whether appointment shifts the citation rate of articles written in the pre-appointment
period; their evidence points to effects of very modest magnitude. As such, an interpretation of
our results that emphasizes the status benefits of HHMI appointment appears unwarranted.

Third, collaboration between scientists in the treatment and control groups might threaten the
validity of the comparisons drawn in the analysis. Fifty-nine out of the 73 HHMI investigators have
at least one control collaborator; 10 have five or more. However, peer effects from coauthorship
(e.g., Azoulay, Graff Zivin, and Wang, 2010), which enhance the accomplishments of the control
group, would tend to dampen the magnitudes of the effects estimated above.

A more subtle reinterpretation of our main results is that “explorer types” are more likely to
seek HHMI appointment. A sorting process in this vein would imply that the freedom and long-
term funding bundled with HHMI appointment have real effects, even if they do not really induce
behavioral changes in the treated group. However, a peculiar feature of the HHMI appointment
process is that candidates do not apply but rather are nominated by their universities, which are
endowed by HHMI with a very limited number of nomination slots. This casts doubt on the

18 For example, HHMI does not pay host institutions standard overhead rates, but does make a contribution toward
rent and occupancy.

19 In a recent article, Jacob and Lefgren (2007) estimate that the elasticity of citations with respect to NIH R01
grant funding is quite small in magnitude, and often insignificantly different from 0. Given their regression-discontinuity
design, it would be hazardous to import their estimate for the analysis of the scientist population analyzed in the present
study.
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sorting interpretation at the principal investigator level. It is altogether more likely (and also more
feasible) for talented postdoctoral researchers and graduate students with idiosyncratic tastes for
exploration to sort themselves into HHMI-funded labs. The fact that HHMI labs train a much
higher number of young scientists who go on to win early career prizes is consistent with a sorting
process at the level of trainees.

In summary, we argue the differences observed between HHMI investigators and controls
are likely to be driven by the program’s distinct incentive features, as opposed to other potential
effects of HHMI appointment.

6. Conclusion

� In this article, we exploit key differences across funding streams within the academic
life sciences to examine the impact of incentives embodied in research contracts on the rate of
scientific exploration. We find that selection into the HHMI investigator program—which rewards
long-term success, encourages intellectual experimentation, and provides rich feedback to its
appointees—leads to higher levels of breakthrough innovation, compared with NIH funding—
which is characterized by short grant cycles, predefined deliverables, and unforgiving renewal
policies. Moreover, the magnitudes of these effects are quite large.

Our findings are important for at least two reasons. First, they demonstrate the impact of
nuanced features of research contracts for the rate and direction of scientific progress. Given the
prominent role that scientific change is presumed to play in the process of economic growth (e.g.,
Mokyr, 2002), this has important implications for the organization of public and private research
institutions. Second, they offer empirical support for the theoretical model developed by Manso
(2011), and as such may provide insights relevant to a wider set of industries that rely on creative
professionals, ranging from advertising and computer programming to leadership roles at the
upper echelons of the corporate world.

Finally, our results should not be interpreted as a critique of NIH and its funding policies.
Although “exploration” incentive contracts appear to stimulate creativity in this setting, it is
unclear how easily, and at what cost, the program could be scaled up. Only scientists showing
exceptional promise are eligible for HHMI appointment, and our results may not generalize to
the overall population of scientists eligible for grant funding, which includes gifted individuals
as well as those with more modest talent. Moreover, HHMI provides detailed evaluation and
feedback to its investigators. The richness of this feedback consumes a great deal of resources,
particularly the time of the elite scientists who serve on review panels, and its quality might
degrade if the program were expanded drastically.

It is also vital to recognize that NIH operates under political constraints that a private
foundation like HHMI can safely ignore. For instance, all public research agencies need to spread
their support across many institutions, including those of lesser renown. Similarly, supporting
individual projects, rather than individual scientists, introduces a level of impersonality in the
funding decisions that may make them easier to defend vis-à-vis congressional appropriators.

Much more could be done to explore the impacts of contract design on research output in
this setting. For example, does the quality of peers at these investigators’ institutions temper or
magnify these effects? Do the effects of exploration-style incentives exhibit hysteresis, that is,
do they lead scientists to be more creative under more conventional contractual arrangements?
Answering these questions is the next step of our research agenda.

Appendix A
Funding people versus funding specific projects

We develop a simple model to contrast the “specific project” and the “people, not projects” approaches to scientific
funding. The researcher lives for two periods. In each period, she chooses a project i ∈ I, producing output S (“success”)
with probability pi or output F (“failure”) with probability 1 − pi. The probability pi of success when the researcher
chooses project i may be unknown. To obtain information about pi, she must engage in experimentation. We let E[pi]
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denote the unconditional expectation of pi, E[pi | S, j] denote the conditional expectation of pi given a success on project
j, and E[pi | F, j] denote the conditional expectation of pi given a failure on project j.

When the researcher chooses project i ∈ I, she only learns about the probability pi, so that

E[p j ] = E[p j |S, i] = E[p j |F, i] for j �= i .

The central concern that arises is the tension between exploration of new ideas and the exploitation of already-
existing ideas along conventional lines (March, 1991). To focus on the tension between exploration and exploitation, we
assume that in each period the researcher chooses between two projects. Project 1, the “conventional” research project,
has a known probability p1 of success such that

p1 = E[p1] = E[p1|S, 1] = E[p1|F, 1].

Project 2, the innovative research project, has an unknown probability p2 of success such that

E[p2|F, 2] < E[p2] < E[p2|S, 2].

We assume that the innovative research project is of an exploratory nature. This means that when the researcher
experiments with the innovative research project, she is initially not as likely to succeed as when she takes a well-trodden
path, as is the case with the conventional research project. However, if she succeeds with the innovative project, she
updates her beliefs about p2, so that choosing the innovative project becomes perceived as superior to choosing the
conventional project. This is captured by

E[p2] < p1 < E[p2|S, 2]. (A1)

The researcher is risk neutral and has a discount factor normalized to one. Her objective function R assigns some
weight α to the outcome produced by this research as well as some weight to her private preferences between the two
projects. These private preferences are represented with a cost ci that is incurred by the researcher whenever she pursues
project i. The researcher thus chooses an action plan 〈i

j
k 〉 to maximize her total expected payoff:

R(〈i
j
k 〉) = {E[pi ]S + (1 − E[pi ])F − ci } + E[pi ]{E[p j |S, i]S + (1 − E[p j |S, i])F − c j }

+ (1 − E[pi ])(E[pk |F, i]S + (1 − E[pk |F, i])F − ck), (A2)

where i is the first-period action, j is the second-period action in case of success in the first period, and k is the second-
period action in case of failure in the first period. We assume that the researcher gets enough funding to perform research
during the two periods. We consider two funding mechanisms: the “specific project” approach and the “people, not
projects” approach.

� The “specific project” approach. Under this approach, the researcher must choose one project to submit for
funding and must work on that project during the two periods. Two action plans need to be considered: 〈1 1

1 〉 and 〈2 2
2 〉. If

the researcher chooses action plan 〈1 1
1 〉, his total expected payoff is

R(〈1 1
1 〉) = {E[p1]S + (1 − E[p1])F − c1} + E[p1]{E[p1]S + (1 − E[p1])F − c1}

+ (1 − E[p1]){E[p1]S + (1 − E[p1])F − c1}. (A3)

If the researcher chooses action plan 〈2 2
2 〉, his total expected payoff is

R(〈2 2
2 〉) = {E[p2]S + (1 − E[p2])F − c2} + E[p2]{E[p2|S, 2]S + (1 − E[p2|S, 2])F − c2}

+ (1 − E[p2]){E[p2|F, 2]S + (1 − E[p2|F, 2])F − c2}. (A4)

From Bayes’ rule, the payoff R(〈2 2
2 〉) is higher than the payoff R(〈1 1

1 〉) if and only if

α(E[p2] − p1)(S − F) ≥ (c2 − c1). (A5)

� The “people, not projects” approach. Under this approach, the researcher can choose any of the two projects
in each period. Two action plans need to be considered: 〈1 1

1 〉, 〈2 2
1 〉. If the researcher chooses action plan 〈1 1

1 〉, her total
expected payoff is

R(〈1 1
1 〉) = {E[p1]S + (1 − E[p1])F − c1} + E[p1]{E[p1]S + (1 − E[p1])F − c1}

+ (1 − E[p1]){E[p1]S + (1 − E[p1])F − c1}. (A6)

If the researcher chooses action plan 〈2 2
1 〉, her total expected payoff is

R(〈2 2
1 〉) = {E[p2]S + (1 − E[p2])F − c2} + E[p2]{E[p2|S, 2]S + (1 − E[p2|S, 2])F − c2}

+ (1 − E[p2]){E[p1]S + (1 − E[p1])F − c1}. (A7)
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The payoff R(〈2 2
1 〉) is higher than R(〈1 1

1 〉) if and only if

α{E[p2](E[p2|S, 2] − p1) + (E[p2] − p1)}(S − F) ≥ (1 + E[p2])(c2 − c1). (A8)

The following proposition contrasts exploration under “specific project” funding and “people, not projects” funding.

Proposition 1. If the agent explores under “specific project” funding, he also explores under “people, not projects”
funding. However, there are situations in which the agent explores under “people, not projects” funding but exploits under
“specific project” funding.

Proof . The first statement follows from the fact that (A5) implies (A8). For the second statement, we construct the
following example. If c2 > c1, (A5) implies that the agent never explores under the “specific project” approach. However,
from (A8), if the payoff from exploration is sufficiently high, the agent will explore under the “people, not projects”
approach.

Appendix B
Career and output data

For every scientist in the control or treatment group, we collected career information from three sources: original CVs/NIH
biosketches; Who’s Who profiles; and Google searches. In practice, the combination of these approaches enabled us to
find employment and demographic data for all the investigators considered in the article. Matching these individuals with
NIH grant information is not challenging because both full names and institutional affiliations can be used. Getting a
precise tally of publications at the individual level is more involved. We will describe this process using as an example
Mario Capecchi, the Nobel Prize winner (and HHMI investigator) mentioned in the Introduction.

The matching process begins with the creation of a customized PubMed search query for each scientist. In the
case of Capecchi, the query is ((‘‘capecchi mr’’[au] OR ‘‘capecchi m’’[au]) NOT 7816017[pmid] AND

1966:2006[dp]), and it returns 122 original publications (the query also returns 19 letters, editorials, interviews,
reviews, etc., which we ignore). The process of harvesting bibliomes from PubMed using name variations and queries as
inputs is facilitated by the use of PubHarvester, a software program we specifically designed for this purpose (Azoulay,
Stellman, and Graff Zivin, 2006).

Capecchi’s PubMed query accounts for his inconsistent use of the middle initial, but is otherwise quite simple.
For other scientists, queries might factor in their inconsistent use of the suffix “Jr.” or name variations coincident with
changes in marital status. For yet many others with common names, the queries are more involved, and make use of CV
information such as scientific keywords, institutional affiliation, frequent coauthors’ names, and so forth. This degree
of labor-intensive customization ensures that a scientist’s bibliome excludes publications belonging to homonymous
scientists.

Appendix C
Estimation procedure for the semiparametric DD estimates

The ATE, ATT, and DD effects stem from panel specifications; the sample size is equal to the total number of independent
career years for each scientist (N × T = 8,767). The procedure followed to estimate the SDD effects is slightly different.
We first regress the various measures of output on calendar year and age indicator variables using the full panel, and
compute the residuals εit. In a second step, we sum the residuals corresponding to the pre-appointment (1986–1994)
and post-appointment (1998–2006) periods separately for each scientist. In the final step, the SDD effects are obtained
by regressing

∑
1994
t=1986 εit − ∑

2006
t=1998 εit on treatment status, weighting these differences as described in Section 4. Note

that the sample size corresponds in this case to the number of scientists (N = 417), not the number of scientist-year
observations.

Appendix D
Scientist-specific citation benchmarks

We illustrate the computation of the number of hits and flops using the example of Iva Greenwald, an HHMI investigator
from Columbia University. Prior to 1994 (the year of her appointment), her publication with the highest citation quantile
is an article which appeared in the journal Cell in 1993 (341 citations as of the end of 2008, which places it in the top
percentile of the article-level distribution). Conversely, her publication with the lowest citation quantile is an article which
appeared in the journal Molecular and Cellular Biology, also in 1993. It garnered only 11 citations, which places it at
the 52nd percentile of the distribution. Between 1995 and 2006, Greenwald published three more publications in the top
percentile of the citation distribution, given their vintage. And she published three more publications which fell in the
32nd, 44th, and 50th percentiles of the distribution in the years they were published. As a result, both the number of hits,
and of flops, are equal to three for this investigator.
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� Estimation. Because we use the entire pre-appointment data to compute citation benchmarks specific to each
individual scientist, we can only analyze the effect of HHMI appointment on these measures of impact using the cross-
sectional dimension of the data, collapsing all post-appointment years into a single observation for each scientist. For the
number of flops, the equation we estimate can be written

E[FLOPSi | Xi ] = exp(β0 + β1HHMIi + β
′
2 Zi + β3MIN QNTLi + φ(SCIENTIST AGEi )), (D1)

where HHMI denotes the treatment effect, the variables in Z include degree type, lab type, and gender indicator variables,
MIN QNTL is the citation quantile corresponding to scientist i’s least impactful article published prior to appointment,20

and φ(SCIENTIST AGEi ) is a flexible function of scientist i’s career age—in practice a full set of indicator variables for the
different years in which our scientists received their highest degree. Estimation proceeds by quasi-maximum likelihood.
In some of the specifications, the data are weighted to reflect each scientist’s inverse probability of being appointed to the
program, as explained in Section 4.
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